NASA Contractor Report 4239

Formal Verification of a
Fault Tolerant Clock
Synchronization Algorithm

John Rushby and Frieder von Henke
SRI International
Menlo Park, California

Prepared for
Langley Research Center
under Contract NAS1-17067

National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
Information Division

1989

Abstract

We describe a formal specification and mechanically assisted verification of
the Interactive Convergence Clock Synchronization Algorithm of Lamport
and Melliar-Smith [11]. In the course of this work, we discovered several
technical flaws in the analysis given by Lamport and Melliar-Smith, even
though their presentation is unusually precise and detailed. As far as we
know, these flaws (affecting the main theorem and four of its five lemmas)
were not detected by the “social process” of informal peer scrutiny to which
the paper has been subjected since its publication. We discuss the flaws
in the published proof and give a revised presentation of the analysis that
not only corrects the flaws in the original, but is also more precise and, we
believe, easier to follow. This informal presentation was derived directly
from our formal specification and verification. Some of our corrections to
the flaws in the original require slight modifications to the assumptions
underlying the algorithm and to the constraints on its parameters, and thus
change the external specifications of the algorithm.

The formal analysis of the Interactive Convergence Clock Synchroniza-
tion Algorithm was performed using our EHDM formal specification and
verification environment. This application of EHDM provides a demonstra-
tion of some of the capabilities of the system.

iii

Contents

1 Introduction 1
1.1 Acknowledgments. 3

2 Traditional Mathematical Presentation of the Algorithm
and its Analysis 4
2.1 InformalOverview 6
2.2 Statement of the Clock Synchronization Problem and Algorithm 10
2.3 Proof that the Algorithm maintains Synchronization 14
2.3.1 Overviewofthe Proof 14
2.3.2 TheProofinDetail 18
2.3.2.1 Constraints on Parameters 18
2322 Thelemmas 19
2.3.2.3 The Correctness Theorem 26

3 Comparison with the Published Analysis by Lamport and
Melliar-Smith 28
3.1 The Definitionofa Good Clock 28
3.2 Explicit Functional Dependencies 29
3.3 Approximations and Neglect of Small Quantities 30
3.3.1 A Flawin the MainInduction 30
332 AFlawinLemmad4 31
3.4 The Interval in which a Clock is a “Good Clock” 32
3.41 Falsehoodof Lemmal. 33
3.4.2 FalsecheodofLemma 2 34
3.5 Sundry Minor Flaws and Difficulties 34

3.5.1 Falsehood and Unnecessary Generality of Lemma 3. . 34
3.5.2 Missing Requirements for Clock Synchronization Con-
ditionS2 e 34

Contents

3.5.3 Typographical Errors in Lemmas 2and 4

4 Formal Specification and Verification in EHDM
41 Overviewof EHDM
4.1.1 The Specification Language

4.1.1.1
4.1.1.2
4.1.1.3 -
4114

Declarations
Modules.

Other Components of the EHDM System
used inthe Proof

4.2 The Formal Specification and Verification of the Algorithm .
4.2.1 Supporting Theories e e e e e e

4.2.1.1
4.2.1.2
4.2.1.3
4.2.14
4.2.1.5
4.2.1.6

Absolutes

Natprops

Functionprops
Natinduction
Sums and Sigmaprops

4.2.2 Specification Modules

4.2.2.1
4.2.2.2
4.2.2.3

Time i it e e e
Clocks.
Algorithm

423 ProofModules0

4.2.3.1
4.2.3.2
4233
4234
4.23.5

5 Conclusions

Bibliography

Clockprops
Lemmas1to6

A Cross-Reference Listing

B KTpX-printed Specification Listings

vi

75

90

Contents

C

Proof-Chain Analysis 145
C.1 Clock Synchronization ConditionS2 ~ .. 145
C.2 Clock Synchronization ConditionS1 159
Plain EHDM Specification Listings 162

vii

List of Figures

2.1 Statements of the Principal Lemmas used in The Proof ... 16
4.1 An Example EHDM Specification Module 42
4.2 IATgX-printed Example EHDM Specification Module 47

viii

List of Tables

2.1
2.2

4.1

Al
A2

B.1
D.1

Notation, Parameters, and Concepts 15
Typical Values for the Parameters 17
Proof Summaries for EHDM Modules 61
IATEX-Printer Translations for EHDM Identifiers 76
Cross-Reference to EHDM Identifiers 77
Page References to EHDM Specification Modules 91
Page References to raw EHDM Specification Modules 163

ix

Chapter 1

Introduction

The Interactive Convergence Clock Synchronization Algorithm is an impor-
tant and fairly difficult algorithm. It is important because the synchroniza-
tion of clocks is fundamental to the fault tolerance mechanisms employed in
critical process control systems such as fly-by-wire digital avionics. It is dif-
ficult because its analysis must consider the relationships among quantities
(i.e., clock values) that are continually changing—and changing moreover at
slightly different rates—and because it must deal with the possibility that
some of the clocks may be faulty and may exhibit arbitrary behavior. Thus,
although the algorithm is easy to describe and a broad understanding of why
it works can be obtained fairly readily, its rigorous analysis, and the deriva-
tion of bounds on the synchronization that it can achieve, require attention
to a mass of detail and very careful explication of assumptions.

Lamport and Melliar-Smith’s paper [11] is a landmark in the field. They
not only introduced the Interactive Convergence Clock Synchronization Al-
gorithm, but two other algorithms as well, and they also developed formal-
izations of the assumptions and desired properties that made it possible to
give a precise statement and proof for the correctness of clock synchroniza-
tion algorithms. Nonetheless, the proof given by Lamport and Melliar-Smith
is hard to internalize: there is much detailed argument, some involving ap-
proximate arithmetic and neglect of insignificant terms, and it is not easy
to convince oneself that all the details mesh correctly. It is precisely in
performing conceptually simple, but highly detailed arguments (i.e., cal-
culations) that the human mind seems most fallible, and machines most
effective. Consequently, the Interactive Convergence Clock Synchronization
Algorithm seems an excellent candidate for mechanical verification. This re-

2 Chapter 1. Introduction

port describes a mechanized proof of the correctness of the algorithm using
the EHDM formal specification and verification environment.

As we performed the formal specification and verification of the Inter-
active Convergence Clock Synchronization Algorithm, we discovered that
the presentation given by Lamport and Melliar-Smith was flawed in several
details. One of the principal sources of error and difficulty was the use by
Lamport and Melliar-Smith of approximations—i.e., approximate equality
(=) and inequalities (X and R)—in order to “simplify the calculations.” We
eventually found that elimination of the approximations not only removed
one class of errors, but actually simplified the analysis and presentation.
We also found and corrected several other technical flaws in the published
proof of Lamport and Melliar-Smith. A discussion of these flaws is given
in Chapter 3. Some of our corrections require slight modifications to the
assumptions underlying the algorithm, and to the constraints on its param-
eters, and thus change the external specifications of the algorithm. Our
formal specification and verification of the algorithm is described in Chap-
ter 4; the detailed listings are to be found in the Appendices.

We discuss the lessons learned from this exercise, and our view of the
role and utility of formal specification and verification in Chapter 5. To
summarize those conclusions: we now believe the Interactive Convergence
Clock Synchronization Algorithm to be correct, not because our theorem
prover says it is, but because the experience of arguing with the theorem
prover has forced us to clarify our assumptions and proofs to the point
where we think we really understand the algorithm and its analysis. As a
result, we can present an argument for the correctness of the algorithm, in
the style of a traditional mathematical presentation, that we believe is truly
compelling. This presentation is given in Chapter 2 and follows very closely
the presentation given in Sections 2.1, 3, and 4 of the original paper (11,
pages 53-66]. However, the details of the proof were extracted directly from
our formal verification.

It is this traditional mathematical presentation of our revised proof of
correctness for the Interactive Convergence Clock Synchronization Algo-
rithm that we consider the main contribution of this work; we hope that
anyone contemplating using the algorithm will study our presentation and
will convince themselves of the correctness of the algorithm and of the ap-
propriateness of the assumptions (and of the ability of their implementation
to satisfy those assumptions). We stress that our presentation merely dots
the i’s and crosses some important t’s in the original; the substance of all

1.1. Acknowledgments 3

the arguments is due to Lamport and Melliar-Smith. Those already famil-
iar with the original presentation should probably read Chapter 3 before
Chapter 2. (Indeed, they may then want to skip Chapter 2 altogether.)

1.1 Acknowledgments

This work was performed for the National Aeronautics and Space Admin-
istration under contract NAS1 17067 (Task 4). The guidance and advice
provided by our technical monitor, Ricky Butler of NASA Langley Research
Center, was extremely valuable. We owe an obvious debt to Leslie Lamport
and Michael Melliar-Smith, who not only invented the algorithm studied
here, but also developed the formalization and analysis that is the basis for
our mechanically-assisted verification. Leslie Lamport also provided helpful
comments on an earlier version of this report.

Chapter 2

Traditional Mathematical

Presentation of the
Algorithm and its Analysis

Many distributed systems depend upon a common notion of time that is
shared by all components. Usually, each component contains a reasonably
accurate clock and these clocks are initially synchronized to some common
value. Because the clocks may not all run at precisely the same rate, they
will gradually drift apart and it will be necessary to resynchronize them
periodically. In a fault-tolerant system, this resynchronization must be ro-
bust even if some clocks are faulty: the presence of faulty clocks should not
prevent those components with good clocks from synchronizing correctly.

The design, and especially the analysis, of fault-tolerant clock synchro-
nization algorithms is a surprisingly difficult endeavor, especially if one
admits the possibility of “two-faced” clocks and other so-called Byzantine
faults.

Consider a system with three components: A, B, and C; A and C have
good clocks, but B’s clock is faulty. A’s clock indicates 2.00 pm, C’s 2.01
pm, and B’s clock indicates 1:58 pm to A but 2.03 pm to C. A sees that
C’s clock is ahead of its own, and that B’s is behind by a somewhat greater
amount; it would be natural therefore for A to set its own clock back a little.
This situation is reversed, however, when considered from C’s perspective.
C sees that A’s clock is a little behind its own and that B’s is ahead by a
rather greater amount; it will be natural for C to set its own clock forward
a little. Thus the faulty clock B has the effect of driving the good clocks

A and C further apart. The behavior of B’s clock that produces this effect
may seem actively malicious and therefore implausible. This is not so, how-
ever. A failed clock may plausibly act as a random number generator (noisy
diodes are indeed used as hardware random number generators) and could
thereby distribute very different values to different components in response
to inquiries received very close together. Of course, one can postulate a
design in which a single clock value is latched and then distributed to all
other components—but then one must provide compelling evidence for the
correctness of the latching mechanism and the impossibility of cummuni-
cation errors, and for the correctness of a clock synchronization algorithm
built on these assumptions.

Accurate clock synchronization is one of the fundamental requirements
for fault-tolerant real-time control systems, such as flight-critical digital
avionics. These systems use replicated processors in order to tolerate hard-
ware faults; several processors perform each computation and the results
are subjected to majority voting. It is vital to this process that the repli-
cated processors keep in step with each other so that voting is performed on
computations belonging to the same “frame.” Since synchronization of pro-
cessors’ clocks is essential for the fault-tolerance provided by this approach,
it is clear that the clock synchronization process must itself be exceptionally
fault-tolerant. In particular, it should make only very robust assumptions
about the behavior of faulty processors’ clocks.

The strongest clock synchronization algorithms make no assumptions
whatever about the behavior of faulty clocks. Lamport and Melliar-
Smith [11] describe three such fault-tolerant clock synchronization algo-
rithms. These algorithms work in the presence of any kind of fault—
including malicious two-faced clocks such as that described above. Of course,
there must not be too many faulty clocks. The first algorithm presented by
Lamport and Melliar-Smith, the Interactive Convergence Algorithm, can tol-
erate up to m faults amongst 3m + 1 clocks. Thus, 4 clocks are required
to guarantee the ability to withstand a single fault. Dolev, Halpern and
Strong have shown that 3m + 1 clocks are required to allow synchronization
in the presence of m faults unless digital signatures are used [8]. Thus, the
Interactive Convergence algorithm requires the minimum possible number
of clocks for its class of algorithms.

The Interactive Convergence Clock Synchronization Algorithm is quite
easy to describe in broad outline: periodically, each processor reads the dif-
ferences between its clock and those of all other processors, replaces those
differences that are “too large” by zero, computes the average of the result-

6 Traditional Mathematical Presentation

ing values, and adjusts its clock by that amount. For descriptions of other
clock synchronization algorithms, presented in a consistent notation, see
the surveys by Butler [4] (which includes hardware techniques) and Schnei-
der [15]. A new class of probabilistic clock synchronization algorithms that
have extremely good performance (in terms of how close the clocks can be
synchronized) has recently been introduced by Cristian [6], but so far the
algorithms in this class are not tolerant of Byzantine failures.

In the next section we give an informal overview of the analysis of the In-
teractive Convergence Clock Synchronization Algorithm. This should sup-
port the reader’s intuition during the more formal analysis in the section
that follows. Although “formal” in the sense of traditional mathematical
presentations, this level of analysis is not truly formal (in the sense of be-
ing based on an explicit set of axioms and rules of inference)—that level of
presentation is described in Chapter 4 and its supporting Appendices.

2.1 Informal Overview

We assume a number of components (generally called “processors”) each
having its own clock. Nonfaulty clocks all run at approximately the correct
rate and are assumed to be approximately synchronized initially. Due to
the slight differences in their running rates, the clocks will gradually drift
apart and must be resynchronized periodically. We are concerned with the
problem of performing this resynchronization; we are not concerned with the
problem of maintaining the clocks in synchrony with some external “objec-
tive” time (see Lamport [12] for a discussion of this problem), nor are we con-
cerned with the problem of synchronizing the clocks initially, although the
closeness with which the initial synchronization is performed will limit how
closely the clocks can be brought together in subsequent resynchronizations.!

The goal of periodic resynchronizations is to ensure that all nonfaulty
clocks have approximately the same value at any time. A secondary goal
is to accomplish this without requiring excessively large adjustments to the
value of any clock during the synchronization process. Formalizing these
two goals and the assumptions identified earlier is one of the major steps
in the verification of the Interactive Convergence Clock Synchronization
Algorithm. For future convenience, we label and explicitly identify them

YThe initial synchronization establishes a bound that cannot be bettered in the worst-
case; in practice subsequent resynchronizations may improve on the initial synchronization.

2.1. Informal Overview 7

here (using the same names as [11]), and give them the following informal
characterizations:

Requirements

S1: At any time, the values of all the nonfaulty processors’ clocks must
be approximately equal. (The maximum skew between any two good
clocks is denoted by §.2)

$2: There should be a small bound (denoted £) on the amount by which
a nonfaulty processor’s clock is changed during each resynchroniza-
tion. (When taken with Al below, this requirement rules out trivial
solutions that merely set the clocks to some fixed value.)

Assumptions

AO: All clocks are initially synchronized to approximately the same value.
(The maximum initial skew is denoted &.)

Al: All nonfaulty processors’ clocks run at approximately the correct rate.
(The maximum drift is a parameter denoted by p.)

Schneider [15] shows that all Byzantine clock synchronization algorithms
can be viewed as different refinements of a single paradigm: periodically, the
processors decide that it is time to resynchronize their clocks, each processor
reads the clocks of the other processors, forms a “fault tolerant average” of
their values, and sets its own clock to that value. There are three main
elements to this paradigm:

1. Each processor must be able to tell when it is time to resynchronize
its clock with those of other processors,

2. Each processor must have some way of reading the clocks of other
processors,

3. There must be a convergence function which each processor uses to
form the “fault tolerant average” of clock values.

In the Interactive Convergence Clock Synchronization Algorithm, each
processor performs a constant round of activity, executing a series of tasks

A summary of the notation and definitions used is given in Table 2.1 on Page 15.

8 Traditional Mathematical Presentation

over and over again. Each iteration of this series of tasks consumes an
interval of time called a period. All periods are supposed to be of the same
duration, denoted by R. The final task in each period, occupying an interval
of time denoted by S, is the clock synchronization task. Each processor uses
its own clock to schedule the tasks performed during each period. Thus,
each processor relies on its own clock to trigger the clock synchronization
task; because the nonfaulty clocks were resynchronized during the previous
synchronization task and cannot have drifted too far apart since then, all
processors with nonfaulty clocks will enter their clock synchronization tasks
at approximately the same time.

During its clock synchronization task, each processor reads the clock
of every other processor. Of course, clock values are constantly changing
and go “stale” if a long (or indeterminate) amount of time goes by between
them being read and being used. For this reason, it is much more useful
for each processor to record the difference between its clock and that of
other processors. The closeness of the synchronization that can be accom-
plished is strongly influenced by how accurately these clock differences can
be read. This gives rise to the third assumption required by the Interactive
Convergence Clock Synchronization Algorithm:

Assumption

A2: A nonfaulty processor can read the difference between its own clock
and that of another nonfaulty processor with at most a small error.
(The upper bound on this error is a parameter denoted by).

The remaining element that is needed to characterize the Interactive
Convergence Clock Synchronization Algorithm is the definition of its con-
vergence function. As suggested above, each processor should set its clock
to a “fault tolerant average” of the clock values from all the processors. The
obvious “average” value to use is the arithmetic mean, but this will not have
the desired fault tolerance property if faulty processors inject wildly erro-
neous values into the process. A simple remedy is for each processor to use
its own clock value in place of those values that differ by “too much” from
its own value. This function, called the “egocentric mean,” is the conver-
gence function used in the Interactive Convergence Clock Synchronization
Algorithm. The parameter that determines when clock differences are “too
large” is denoted A.

To gain an idea of why this works, consider two nonfaulty processors
p and ¢. For simplicity, assume that these processors perform their syn-

2.1. Informal Overview 9

chronization calculations simultaneously and instantaneously. If r is also a
nonfaulty processor, then the estimates that p and ¢ form of r’s clock value
can differ by at most 2¢. If r is a faulty processor, however, p and ¢ could
form estimates of its clock value that differ by as much as 2A + 6. (Since r
could indicate a value as large as A different from each of p and ¢ without
being disregarded, and these processors could themselves have clocks that
are § apart.) Assuming there are n processors, of which m are faulty, the
egocentric means formed by p and g can therefore differ from each other by

as much as
2(n — m)e+ m(6 + 24)

n

Thus, provided
2mA

n—-m’

6> 2+

2.1)

this procedure will maintain the clocks of p and ¢ within § of each other, as
required.

Since a nonfaulty processor’s clock can differ from another’s by as much
as 6, and reading its value can introduce a further error of ¢, it is clear that

we must require
A2>6+e

since otherwise perfectly good clock values could be disregarded. This gives
A—-e>6

which, when taken with (2.1), yields

3E<n-—3m

A. (2.2)

n-—-m

Because all the variables involved are strictly positive (except m, which is
merely nonnegative), (2.2) implies

n > 3m,

showing that four clocks are required to tolerate a single failure. (Notice that
seven clocks are required to withstand two simultaneous failures. However,
if each failure can be detected and the system reconfigured before another
failure occurs, then five clocks can withstand two failures.)

Lamport and Melliar-Smith raise a couple of fine points that should be
considered in implementation and application of the Interactive Convergence

10 Traditional Mathematical Presentation

Clock Synchronization Algorithm. The correction that occurs at each syn-
chronization causes a discontinuity in clock values. If a correction is positive
(because the clock has been running slow), then some units of clock time
will vanish in the discontinuity as the correction is applied. Any task sched-
uled to start in the vanished interval might not occur at all. Conversely, a
negative correction (for a fast clock), can cause units of clock time to repeat,
possibly causing a task to be executed a second time. One solution to these
difficulties is to follow each clock synchronization with a “do nothing” task
of duration at least ¥. An alternative, that has other attractive properties,
is to avoid the discontinuity altogether and spread the application of the
correction evenly over the whole period [11, pages 54-55].

2.2 Statement of the Clock Synchronization
Problem and Algorithm

The informal argument presented above did not account for the fact that
the clocks may drift further apart in the period between synchronizations,
nor did it allow for the facts that the algorithm takes time to perform, and
that different processors will start it at slightly different times. Taking care
of these details, and being precise about the assumptions employed, is the
task of the more detailed argument presented in this section.

The first step is to formalize what is meant by a clock, and what it means
for a clock to run at approximately the correct rate.

Physically, a clock is a counter that is incremented periodically by a
crystal or line-frequency oscillator. By a suitable linear transformation, the
counter value is converted to a representation of conventional “time” (e.g.,
the number of seconds that have elapsed since January 1st, 1960, Coordi-
nated Universal Time). This internal estimation of time may be expected
to drift somewhat from the external, standard record of time maintained by
international bodies. In order to distinguish these two notions of time, we
will describe the internal estimate of time that may be read from a proces-
sor’s clock as clock time, and the external notion of time (that may not be
directly observable) as real time. Following Lamport and Melliar-Smith, we
use lowercase letters to denote quantities that represent real time, and upper
case for quantities that represent clock time. Thus, “second” denotes the
unit of real time, while “SECOND” denotes the unit of clock time. Within
this convention, Roman letters are used to denote “large” values (on the or-

2.2. Statement of the Clock Synchronization Problem and Algorithm 11

der of tens of milliseconds), while Greek letters are used to denote “small”
values (on the order of tens of microseconds).

We are interested in process control applications where events are trig-
gered by the passage of clock time—e.g., “start the furnace at 9 AM and
stop it at 5 PM,” or “run the clock synchronization task every 5 SECONDS.”
Our notion of synchronization is that activities scheduled for the same clock
time in different processors should actually occur very close together in real
time.® Thus, we define a clock ¢ to be a mapping from clock time to real
time: ¢(T') denotes the real time at which clock ¢ reads T'. Two clocks ¢ and
¢' are said to be synchronized to within real time § at clock time T if they
reach the value T' within § seconds of each other—i.e., if |¢(T') — ¢'(T)| < 6.
The real time quantity |¢(T) — ¢'(T')| is called the skew between c and ¢’ at
clock time T'. Another measure of the divergence between these two clocks
is the adjustment that one of them should make in order to reduce the skew
to zero. The clock time quantity & such that ¢(T + &) = ¢'(T) is called ¢’s
adjustment to ¢’ (at time T').

A clock is a “good clock” if it runs at a rate very close to the passage of
real time. Lamport and Melliar-Smith define this formally in terms of the
derivative of the clock function. However, since we will be using a mechanical
verification system, and do not want to have to axiomatize a fragment of
the differential calculus, we use a slightly different formulation taken from
Butler [4].

Definition 1: A clock ¢ s a good clock during the clock time interval
[TO) Tn] 'f
o) —c(Ts) | ¢
T -T; 2

whenever Ty and Ty (Ty # T3) are clock times tn [To, Ti].

Clocks are resynchronized every R SECONDS. We assume some starting
time T°, define T0) = T° 4 R (¢ > 0), and let R() denote the interval
[T76), T6+1)], which we call the §’th period. The actual synchronization task
is executed during the final S SECONDS of each period: all reading and
transmitting of clock values occurs within the interval [T(H+1) — g T(+1)]
which we call the ¢’th synchronizing period and denote by S(*).

8For other classes of applications, the reverse notion may be more appropriate—e.g.,
if a single event is to be given (clock time) timestamps by different processors, then we
may want the different timestamps (all triggered at the same real time) to be very close
together. Lamport and Melliar-Smith [11, page 61] indicate how to convert between this
notion of synchronization and the one used here.

12 Traditional Mathematical Presentation

We consider a set of n processors, where processor p has clock ¢,. Clocks
are adjusted by adding a “correction” to their values; the correction used
by processor p during the s’th period is denoted C,gi), so that the real time
corresponding to clock time T on processor p during period 1 is ¢, (T+C,(,‘)).
We denote this quantity by c,(,‘)(T) and we call cg) the logical clock for
processor p during the ¢’th period. We call T + C,Si) the adjusted value of
T for processor p in period ¢ and denote it by A,(,'.)(T) (so that c,(f)(T) =
cp(A,(f) (T))). For simplicity, we assume that the initial correction Cy> = 0.

The skew between the clocks of processors p and ¢ at time T in R(¥) is
given by

|e$)(T) - e)(T)].

The goal of the Interactive Convergence Clock Synchronization Algorithm
is to bound this quantity for good clocks. We assume that all the clocks are
synchronized within 8 of each other at the “starting time” T'(0):

AO: For all processors p and g, |ci* (T(?) — e{(T()] < &.

The process control applications that are of interest to us typically per-
form a schedule of many separate tasks during each period. Our goal is to
ensure that tasks which are scheduled to occur on different processors at
the same clock time during a particular period actually occur very close to
each other in real time. To achieve this, processor p should perform a task
scheduled for time T in the ’th period at the instant its clock actually reads
Af,") (T).* An obvious consequence is that the i’th period for processor p
runs from when its adjusted clock reads T() until it reads T(+1). That is, it
is the clock time interval [Ag)(T(“)), A;‘)(T(”l))]. Therefore, if a processor’s
clock is to work long enough to complete the s’th period, it must be a good
clock throughout the interval [A,(,,o)(T(O)),A,(,')(T(”l))]. This motivates the
following definition of what it means for a processor to be nonfaulty:

Al: We say that a processor is nonfaulty through period ¢ if its clock is a
good clock in the clock time interval [A;,O) (T, A,S,')(T(‘+1))].

4To see this, consider a processor whose clock gains one SECOND every hour and whose
periods are of one HOUR duration. A task to be performed 5 MINUTES into period 3 should
be started when the adjusted time reads 3 hours and 5 minutes from the initial time. The
correction during period 3 will be -3 SECONDS, so that the task will be started when the
clock actually reads 3 hours, 5 minutes and 3 seconds from the initial time. It can be seen
that this is indeed the desired behavior.

2.2. Statement of the Clock Synchronization Problem and Algorithm 13

There is another assumption about nonfaulty processors, which is not
formalized and is not considered further during the analysis: this is the
assumption that nonfaulty processors perform the algorithm correctly.

Now we can state formally the goals that the Interactive Convergence
Clock Synchronization Algorithm is to satisfy.

Clock Synchronization Conditions: For all processors p and g, if all but
at most m processors (out of n) are nonfaulty through period ¢, then

S1: If p and ¢ are nonfaulty through period ¢, then for all T in R
|e(T) - l)(T)| < 8.
S2: I processor p is nonfaulty through period s, then
jcli+) — ¢l < =

We now formalize Assumption A2 concerning the reading of clocks. The
idea is that sometime during the ¢’th synchronizing period, processor p
should obtain a value that indicates the difference between its own clock
and that of another processor q. To synchronize exactly with ¢ at some
time 7" in SU), p would need to know the ideal adjustment <I>,(,'.,), that it
should add to its own value so that c,(;)(T' + Qg,),) = cS"(T'). In practice, p
cannot obtain this value exactly, instead, it obtains an approximation A.(;ip
that is subject to a small error €. The formal statement is given below.

A2: If conditions S1 and S2 hold for the ¢’th period, and processor p is
nonfaulty through period ¢, then for each other processor g, p obtains a
value Aq(,',), during the synchronization period S(). If ¢ is also nonfaulty
through period ¢, then

Al < s

and .
(T + ALY — (T")| < €

for some time T in S,

If p = q, we take A((I",), = 0 so that A2 holds in this case also. Notice that
A2 requires S1 and S2 to hold in the period concerned. This is because the
method by which processors read the differences between their clocks may

14 Traditional Mathematical Presentation

require them to cooperate—which may in turn depend upon their clocks
already being adequately synchronized.

Finally, we can give a formal description of the Interactive Convergence
Clock Synchronization Algorithm (in the following also referred to as “the
Algorithm” for short).

Algorithm CNYV: For all processors p:
i+1) _ (i i
it = + A,

where
v (n) ElAr'p’ and

E,(,'z = if |A£‘2| < A then As‘;), else 0.
A summary of the notation and definitions introduced so far is given in
Table 2.1 on Page 15. Some typical values for the parameters, based on an
experimental validation using the SIFT computer [5], are given in Table 2.2

on Page 17.

2.3 Proofthat the Algorithm maintains Synchro-
nization

We now need to prove that the Interactive Convergence Clock Synchroniza-
tion Algorithm maintains the clock synchronization conditions S1 and S2.
Condition S2 is easy; the difficult part of the proof is to show that the Al-
gorithm maintains Condition S1. The proof is an induction on s—we show
that if the clocks are synchronized through period ¢, and if sufficient proces-
sors remain nonfaulty through period ¢ + 1, then the nonfaulty processors
will remain synchronized through that next period. The actual proof is a
mass of details, so it will be helpful to sketch the basic approach first. For
reference, the statements of the main Lemmas are collected in Figure 2.1.

2.3.1 Overview of the Proof

We are interested in the skew between two nonfaulty processors during the
¢ + 1’st period—that is, in the quantity

ICI(JH'I)(T) _ c¢(1i+1) (T)I

2.3. Proof that the Algorithm maintains Synchronization 15

Symbol Concept

n number of clocks

m number of faulty clocks

R clock time between synchronizations

S clock time to perform synchronization algorithm

T() clock time at start of i’th period (= (%) + {R)

R®) i’th period (= [T, T(+1)])

S() i’th synchronizing interval (= [T(+1) — g T(+1)))

C,(,') cumulative correction for p’s clock in ¢’th period

Ag) (T) | adjusted value of T for p’s clock in ¢’th period (= T + C,(,'.))
¢p(T) | real time when p’s clock reads T

c,(,i) (T) | real time in 1’th period, when p’s clock reads T (= c,(Ap")(T)))
) maximum real time skew between any two good clocks

bo maximum initial real time skew between any two clocks

€ maximum real time clock read error

P maximum clock drift rate

A.g',), clock time difference between ¢ and p seen by p in ¢’th period
A cut off for AS,),

5((,‘,), if IAS';),I < A then Ag‘,), else 0

A,(,‘) clock time correction made by p in ¢’th period (mean of Az p’8)
by maximum correction permitted

Table 2.1: Notation, Parameters, and Concepts

16 Traditional Mathematical Presentation

Lemma 1: If the clock synchronization conditions S1 and S2 hold for 1,
and processors p and q are nonfaulty through period i + 1, then

Al < A.
Lemma 2: If processor p s nonfaulty through period 1 + 1, and T

and 11 are such that A,(,')(T) and AS)(T + II) are both in the interval
(40T @), AFH(TE+D)), then

e+ 1) - [e() + 1| < £l

Lemma 3: If the clock synchronization conditions S1 and S2 hold for 1,
processors p and q are nonfaulty through periodi+1, and T € SO, then

(T + AL)) — fN(T)| < e+ pS.

Lemma 4: If the clock synchronization conditions S1 and S2 hold for i,
processors p,q, and r are nonfaulty through periodi + 1, and T € SC), then
1€(T) + AL) - [(T) + AL))| < 2(e + pS) + pA.

Lemma 5: If the clock synchronization condition S1 holds for 1, processors

p and q are nonfaulty through period s+ 1, and T € SO then

1e8(T) + AW - [e$U(T) + AW))| < 6 +20.

Figure 2.1: Statements of the Principal Lemmas used in The Proof

2.3. Proof that the Algorithm maintains Synchronization 17

Parameter Value

6

104.8 msec.

3.2 msec

132 psec. (typically, 10 psec. is achieved)

66.1 usec. (typically, better than 15 usec. is achieved)
15 x 107©

340 usec.

340 usec.

134 psec. (m = 0}, 271 psec. (m = 1)

SMP® " Sy

Table 2.2: Typical Values for the Parameters

where T € R(+1), By the Algorithm,
e H(T) = (T = BT + AW - T +al), (23)

and since good clocks run at approximat_'.ely the correct rate, c},‘)(T + Ag))
and cg')(T+ Ag')) are close to c,(,')(T) +A,(,') and to cg') (T)+A£'), respectively.
From this it follows that the right hand side of (2.3) can be approximated
by
e(T) + AP - (1) + AL,
A major step in the proof, identified as Lemma 2, is concerned with bounding
the error introduced by this approximation. Then, since A,(,') and Ag') are the
(1)

averages of A{) and Ary, it is natural to consider the individual components
efUT) + AL) - [e)(T) + AY))). - (2.4)

There are two cases to consider. The first, in which only p and ¢ are assumed
nonfaulty, is the focus of Lemma 5, while the second, in which r is also
assumed nonfaulty, is considered in Lemma 4. The first case is quite easy—

the Algorithm ensures that Ar‘,), and Ar‘q can be no larger than A, while
c,(,‘) (T) and cgi) (T) can differ by no more than § (by the inductive hypothesis).
For the second case, Lemma 1 provides the result]Ay,),l < A, so that the
Algorithm will establish A,(-i,), = A,(»i,), and A£'2 = AQ. The quantity (2.4) is
then rewritten as

e (T) + A8 = o(T) = e)(T) + AL) - 7))

18 Traditional Mathematical Presentation

Regarding this as the absolute difference of two similar expressions, we are
led to consider values of the form

(T + A - ()
which, using Lemma 2, can be approximated by
9T + A1) - D).

Lemma 3 is concerned with quantities of this form.

2.3.2 The Proof in Detail

We now prove that the Interactive Convergence Clock Synchronization Al-
gorithm maintains the clock synchronization conditions S1 and $2. The
proof closely follows that of Lamport and Melliar-Smith [11, pages 64—66]
(though we do separate the two synchronization conditions and prove them
individually as Theorems 1 and 2, respectively). In particular, our Lemmas
1-5 correspond exactly to (corrected versions of) theirs. However, since we
use Lemma 2 in the proof of Lemma 1, we rearrange the order of presenta-
tion accordingly. We also introduce a Lemma 6 and a Sublemma A that is
used in its proof and also in the base case of the inductive proof of condition
S1. Lamport and Melliar-Smith subsumed both of these in the proof of their
main theorem. In addition, we distinguish several special cases for Lemma
2, which we identify as Lemmas 2a-2d. (Lemma 2c is the one that corre-
sponds most closely to Lemma 2 in [11].) The reasons for these additional
lemmas are: first, we describe the proof in greater detail than did Lamport
and Melliar-Smith; secondly, the statements of some of our lemmas are more
restrictive than those of Lamport and Melliar-Smith (that is why we need
several variants of Lemma 2—the single Lemma 2 stated by Lamport and
Melliar-Smith is false); thirdly, this presentation of the proof exactly follows
the structure of the formal verification described in Chapter 4 and presented
in detail in the Appendices.

In the remainder of this section we state and prove the lemmas identi-
fied above, followed by the main theorems. First, however, we state some
constraints on parameters that are employed in several of the proofs.

2.3.2.1 Constraints on Parameters

Our proofs are contingent on the parameters to the Algorithm
(n,m,R,S,Z,A,¢,6,8 and p) satisfying certain constraints. We could men-
tion these constraints explicitly in the statements of the lemmas and of the

2.3. Proof that the Algorithm maintains Synchronization 19

theorems, but that would be tedious and would clutter those statements
needlessly. Accordingly we list and name here the six constraints that the
parameters are required to satisfy. Satisfaction of these constraints is as-
sumed throughout the proof.

The first two constraints can be modified (but not eliminated) if neces-
sary by suitably adjusting some of the proofs; we chose these particular con-
straints for simplicity and because we felt that there would be no difficulty
satisfying them in any likely implementation. The other four constraints are
fundamental to the operation and analysis of the Algorithm.

Cl: R >3S
C2: S>%
C3: X>A
Ca: A>6+e+£S

C5: 6> 6+ pR

2 R M)
C6: § > 2(e+ pS) + mA y 2 + pA
n-m n-m n-m

The reader may wonder why we do not include the celebrated constraint
3m < n. The reason is simply that this is a derived constraint, not a funda-
mental one. It is easy to see that C4 and C6 can be satisfied simultaneously
only if indeed 3m < n, but it is also quite possible for values of other pa-
rameters to render C4 or C6 unsatisfiable even if 3m < n.

2.3.2.2 The Lemmas

Lemma 2: If processor p is nonfaulty through period i + 1, and T
and 11 are such that A},') (T) and A,S,')(T + II) are both in the interval
(457(7©), AF+D(T64))], then

)T +10) ~ [ef)(T) +1]| < 2 |10

Proof: Since p is nonfaulty through period s + 1, we know by Al that
¢p is a good clock in the interval [A},O)(T(o)),A,(,'+1)(T(‘+2))]. Then, by the
definition of a good clock, we have '

o(45(T+10) ~ eo(4P(T) | _»p
I 2’

20 Traditional Mathematical Presentation

from which the result follows by the identities c,(,'.) (T) = cp(Ag)(T)), and
(T +10) = ¢, (40T + D).
0

We are going to need some specializations of Lemma 2. The first will be
used to bound expressions of the form

(T + @ + 1) ~ [c{)(T + @) +]|

where T € S(). Application of Lemma 2 in this case requires us to es-
tablish that A,(:)(T + @) and A,(,‘)(T + @ + II) are both in the interval
(45 (7@, 47D (T)

Recall that C,ﬁ"’ = 0, so that Ago)(T) = T. Thus, in order to satisfy the
lower bound Af,o) (TO) < Agi) (T+®) in the case s = 0and T = T(O)+ R-S,
it is clear that we should require |®| < R — S. To prove that this condition
suffices for the case of general ¢ and T is surprisingly tedious and requires

an induction on .
We have just established the base case; for the inductive step, we assume

that T € S () and |®| < R — S are sufficient to establish that A;,o)(T(o)) <
A,(,')(T + &) and we note that if T’ € S(+1) then " =T+ Rfor T € S0,
Thus

AT +8) = AMN(T+@+R)

AV(T+ o+ R+CI) - cl))
AT + @)+ R+) - ¢l
> A,(oo) (T©) + R+ C‘(,.-+1) _ C‘g.-)

H

where the last line follows from the inductive hypothesis. In order to com-
plete the inductive step, we need to establish that

R+cCitY —ci) >o0.

This is an easy consequence of S2, C1 (which is used to derive S < R), and
C2.

To satisfy the upper bound Aﬁ,’)(T +®) < A,(,'“)(T("H)) in the limiting
case T = TU+1), we need to establish

T(I'+1) +¢+C’St) < T(f+2) +C}(7i+l).

2.3. Proof that the Algorithm maintains Synchronization 21

Now T(+2) = T(+1) 4 R and S2 provides [CS™) — | < £ s0 what we
need is
P<R-X.

It is clear that this can be achieved if |®| < R — S (as before), and |Z| < S.
The latter constraint is ensured by C2.

We have just sketched the proof of
Lemma 2a: If processor p is nonfaulty through period i + 1, T € S0,
|+ H|<R-S, and |P| < R~ S, then

T+ @+ 1)~ [T+ @) + 1| < £]

O
We will also require a variant of this result where the only bounds avail-

able on @ and IT are |®| < S and |II| < S. It is easy to see that Lemma 2a
can be applied, provided 35S < R—which is the Constraint C1. This yields
Lemma 2b: If processor p is nonfaulty through period s + 1, T € S,
|®] < S, and |TI| < S, then

|efHT + @+ 1) = [f)(T +) + 10| < £).

]
The special case & = 0 provides
Lemma 2c: If processor p is nonfaulty through periodi +1, T € SU), and
[T} < S, then
)T +10) ~ [(9(7) + 1) < £ .

0O
The final specialization of Lemma 2 is Lemma 2d. Like that of Lemma

2a, its proof requires a surprisingly tedious argument (including an induc-
tion) to establish that the constraints on II are sufficient to satisfy the an-
tecedents to Lemma 2.
Lemma 2d: If processor p is nonfaulty through period s and 0 < Il < R,
then

eD(T®) 4 1) - [B)(TW) + 1)) < ;i L.

O
Lemma 1: If the clock synchronization conditions S1 and S2 hold for 3,
and processors p and q are nonfaulty through period s + 1, then

Al < A.

22 Traditional Mathematical Presentation

Proof: By A2, we have _
1al)| < s (2.5)

and . » .
(T + Al) — (1) < €

for some time 7" in SU). Using the arithmetic identity

2= (u=v)+(v-w) - (u—[w+a])

we obtain
a5 = | ST+ AG) - (T
+c (T') c (T')
(c(')(T'+ A = () + a8
Hence

Bl < 1e('+ Agp) < e’ (T')
+ Ic (T') ()|
+ |+ A(N — 1) + ald).
The first term in the right hand side is the left hand side of the instance of

A2 with which we began. Applying S1 and Lemma 2c to the second and
third terms, respectively, we obtain

a8 < e+ 6+ 2 af)

from which the conclusion follows by (2.5) (which was also needed to justify
application of Lemma 2c) and C4.

O

Lemma 3: If the clock synchronization conditions S1 and S2 hold for s,
processors p and q are nonfaulty through periodi+ 1, and T € S6), then

(T + Al)) ~)(T)| < e+ pS.

Proof: By A2, we have ‘
1Al < s (2:6)

and . ‘ .
€T + Al)) -)T < €

2.3. Proof that the Algorithm maintains Synchronization 23

for some time 7' in S(). Let IT = T — 7', so that T = T' + II. Using the
latter, plus the arithmetic identity

z-y=(z-[uto])+(u-w)~(y-[w+v]),

we obtain:
Ao -dmi=
| @+ A+ - (1 + af) + 1)
+ (T + Af)) -)
= (@' + 1) - (1) + 1)),
Hence

4 + Al - &(T)) <
e (7" + A5 +10) - (7 + AL + 1)
+ 1T+ Af) - ()
+ 1@+ 1) - [y +).
Applying Lemma 2b to the first term on the right hand side (this is justified
by (2.6) and the observation that |II| < § since T and T' are both in S o),

recognizing the second term as the left hand side of the instance of A2 with
which we began, and applying Lemma 2c¢ to the third term, we obtain

Icg)(T +A£",),) _ cg‘)(T)I < -g- ITI| + e+ g 1.

The result then follows from |II| < S.

O
Lemma 4: If the clock synchronization conditions S1 and S2 hold for 1,
processors p,q, and r are nonfaulty through period i + 1, and T € SG), then

e2(T) + B ~ [fUT) + AR < 2(c+5) + pA.
Proof: By Lemma 1, we know that IAg,),‘l < A and |A£'2| < A. Hence, by
the Algorithm, AS‘,’, = Aﬁ',l and [&5’3 = AS'q) and so
e£2(T) + B8 - [(T) + Al = 160(T) + AY - (0T + AQ)
Using the arithmetic identity

z-y=(u-y)-(v-2)+(v-w) - (u-w)

24 Traditional Mathematical Presentation

we obtain |c(‘)(T) N A(') [c(')(T) N A(')]| B
| o w+&b k%m+AW
(c,, (T +a%) - [c (1) + %)
+c (T+A()) el (T)
— (@ + a8 -)
and so

(T) + A - [c(T) + AW)]) <

w(T+A%)+ A8

(T + AD) - (1) + AY)]

(T + A7) =) (T)]

T + A8 - (7).
The result follows on applying Lemma 2d to the first two terms in the
right hand side (using C2 and C3 to provide A < S) and Lemma 3 to the
remaining two.
O

Lemma 5: If the clock synchronization condition S1 holds for s, processors
p and q are nonfaulty through periods+1, and T € S, then

1c0)(T) + Al) - [c(‘)(T) +A0] < 6+ 24.

Proof: Using the arithmetic identity
(a+z)-(b+y)=(a-b)+(z-y),
we obtain

@) + B8 - (D) + AR = |)(0) - o)1) + A - AR

1) - () + 129 +188).

IA

The result follows on applying S1 to the first term on the right hand side,
and observing that the Algorithm ensures that the remaining two terms are
no larger than A.

O

Sublemma A: If processors p and q are nonfaulty through period s, and
T € RY), then

[e§)(T) = AT < 1) (D) = PTD)| + pR.

2.3. Proof that the Algorithm maintains Synchronization 25

Proof: Letting Il = T — T() (so that T = T¢) + I and 0 < I1 < R), and
using the arithmetic identity

z-y=(z-[utv])+(v-w)-(y-[w+v])

we have))
(@) - T =
| SNTO + 1) - [)(70) + 1)
+ P (1) - (7))
— (@6 + 1) - [)(T®) +)|
and hence

|e§N(T) — (1)) <
[e)(T® +10) ~ e (T) + 11]
+ [6)(T0) - &) (T ®)
+ 1@ + 1) - [) +)]
The result then follows on applying Lemma 2c¢ to the first and third terms
on the right hand side.

O
Lemma 6: If processors p and q are nonfaulty through period i + 1, and

T € RU+1) then
|+ (T) - CS"“)(T)I < IC,‘,"(T“‘“") +A£" ~ (e (TE+) +A£"]I +p(R+X).

Proof: Using Sublemma A (for the case ¢ + 1 rather than 1), we obtain
|c'(:‘+1)(T) _ c‘(zi+1)(T)| < 'c’(Ji+1)(T(o'+1)) _ c‘(li+1)(T(i+1))| + pR.
By the Algorithm,
|c£i+1)(T(i+l)) _ c‘(’i+1)(T(€+l))| — Ic}(:')(T(i+1) + Ag)) _ c‘('c')(T(i+l) + As:))l
Using the arithmetic identity
z-y=(z-[utv])-(y—[w+z])+ (s+v-[w+2])
we obtain
Icg)(T(H-l) + Ag)) _ cgt')(T(Hl) +A‘(;'))I —
| @ +a0) - [T + 80
- (Cg(l')(T(Hl) + Ag")) _ [c;')(T(‘+1)) + Af(;)])
+ e (T64) + 88 - (T 6+1) + AD)

26 Traditional Mathematical Presentation

and hence
T + AD) - (T 4 AD) <
6576 4+ AD) — [)(TD) 4 AP

+ 1T 1+ AD) - [)(T6H) + AT

+ 1) @) + A7 - [(T6) + af)
Applying Lemma 2c to the first two terms on the right hand side (which is
Justified because the Algorithm provides Ag) = C,(,Hl) - C,(,‘), S2 then gives
[Agi)l < I, and C2 gives ¥ < S), we obtain

1e@(TE) 4 AW — (O(TE+) 4 AD)] <

c@(@E) + 4D - [(O(TEHV) 4 AP+ p.
and the result follows.
0

2.3.2.3 The Correctness Theorem

We divide the correctness theorem into two, and prove separately that the
Algorithm maintains S1 and S2.
Theorem 1: For all processors p and q, if all but at most m processors are
nonfaulty through period s, then

S1: If p and q are nonfaulty through period i, then for all T in R0)
e8)(T) - (T)| < 6.
Proof: We use induction on §. The base case 1 = 0 follows from Sublemma

A, Assumption A0, and Constraint C5. For the inductive step, we assume
the theorem true for ¢, assume its hypotheses true for s + 1, and consider

|c§,‘+l)(T) - cg"H)(T)I. Lemma 6 then gives
()~ (T < eDTED) 4 AP ~ (HTE) 4 AV) 4 4B+ E).
By the Algorithm, the right hand side equals

1 § 3 [t A (¢ [t [A (s
|(—) S (AITE) + A1 - (T E4D) + A |+ p(R +)

IA

1\ = () (mls A (i §) i A
(2) S 120 4 AY ~ [T+ + A+ p(R+)
r=1

IA

(%) [(n — m)(2le + pS] + pA) + m(6 + 24)] + p(R + £)

2.3. Proof that the Algorithm maintains Synchronization 27

where the first term is obtained by applying Lemma 4 to the n —m nonfaulty
processors, and the second is obtained by applying Lemma 5 to the m faulty
ones. The result then follows from the Constraint C6.

O

Theorem 2: For all processors p, if all but at most m processors are non-
faulty through period i, and processor p 1s nonfaulty through period i, then

s2: oY — ¢l < =.

Proof: The Algorithm defines
C‘(,i'l'l) — C}(,') + A}(’l)

and Ag) is the average of n terms, each less than A. The result follows.
a

Chapter 3

Comparison with the

Published Analysis by
Lamport and Melliar-Smith

In this chapter we describe the differences between our analysis and that of
Lamport and Melliar-Smith, and we describe and discuss the flaws in their
presentation.

Our proof of the correctness of the Interactive Convergence Clock Syn-
chronization Algorithm, which was presented in the previous chapter, follows
the original proof of Lamport and Melliar-Smith {11] very closely; our only
changes are technical ones. Some of these were motivated by the needs
of truly formal specification and verification; others were motivated by the
need to correct flaws in the original. We begin with changes in the first
class, then describe the flaws we discovered in the published proof.

3.1 The Definition of a Good Clock

Lamport and Melliar-Smith define the notion of a good clock relative to a
real time interval as follows:

A clock ¢ 1s a good clock during the real time interval (t,ts]
if it is a monotonic, differentiable function on [T1,T:], where
T = ¢ (), = 1,2, and for all T in [T, T):

de P

28

3.2. Explicit Functional Dependencies 29

This definition obviously presents a considerable challenge for a completely
formal specification—it would require axiomatizing a fragment of the differ-
ential calculus. Accordingly, we follow Butler [4] and use the Mean-Value
Theorem to provide a more tractable definition:

c(T1) —¢(T2) p
T 1l <5

This formulation avoids the use of derivatives, but still requires use of the
inverse clock function. This can be avoided by defining the notion of a good
clock relative to a clock time interval:

A clock ¢ is a good clock during the clock time interval [To, T|
if
c(Tl) — C(Tz) ~1l < E
T, 2

whenever Ty and Tz are clock times in [T, TN].

The formulation we employ for the notion of a good clock is this last one,
except that we rewrite the constraint as

e(T) - e(T2) = (T1 = To)| < £ (Ty ~)

in order to avoid the use of division and the obligation to ensure T # T3.

Notice that although we no longer ezplicitly require a good clock to be
monotonic, it follows implicitly as a corollary to our definition that, since p
is small, the clock function c is strict monotonic increasing (and therefore
has an inverse function). This fact is proved as Theorem monotonicity in
Module clocks.

3.2 Explicit Functional Dependencies

We made the functional dependency on $, the synchronization period, ex-
plicit in the three subscripted A quantities that appear in the Algorithm:
where Lamport and Melliar-Smith use Ap, Ay, and A,p, we use A,(D'.),Ag(,.,),
and B((,i,),. Thus, AQ, is the difference between ¢’s clock and p’s observed
by p during the i’th period. This change is a technical correction necessi-
tated by our use of a strict formalism. An alternative in the case of Agp
would have been to include it in the scope of the existential quantification

in A2 (Skolemization would then have provided the functional dependence

30 Comparison with Analysis of Lamport and Melliar-Smith

on 1), but that would have needlessly complicated the technical details of
the argument.

Throughout the rest of this Chapter, we use the notation of Lamport
and Melliar-Smith (i.e., no superscripts on the A functions) whenever we
are discussing their proof.

3.3 Approximations and Neglect of Small Quan-
tities

In order to “simplify the calculations” Lamport and Melliar-Smith make ap-
proximations based on the assumption that np < 1. They neglect quantities
of order npe and np? [11, Section 3.4] and use the notation z = y to indicate
approximate equality and z < y to indicate approximate inequality. (z S y
means z < y' for some y' ~ y.)

When we first attempted to formalize the proof of Lamport and Melliar-
Smith, we followed their example and used approximations. However, we
soon discovered that this required use of some unjustifiable axioms; referring
to the published proof, we found the corresponding steps to be incorrect
there also. One of these steps is in the main induction (invalidating the
whole proof), another is in Lemma 4. These are described below.

3.3.1 A Flaw in the Main Induction

The goal of the main induction is to establish the clock synchronization
condition S1. This is stated [11, page 63] as

O(T) - e)(T)| < 6
while the inductive step [11, page 66] establishes
g UT) = efH (T S s,

Thus, the inductive step establishes the desired result only under the unac-
ceptable hypothesis that z < y O z < y. Of course, this immediate difficulty
can be remedied by restating S1 as

€9(T) - (T)] < 5

but one would then have to reexamine the whole proof in order to be sure
that the inductive step and all its lemmas remain true under this weaker
premise. O

3.3. Approximations and Neglect of Small Quantities 31

3.3.2 A Flaw in Lemma 4

Lamport and Melliar-Smith’s version of Lemma 1 [11, page 64] establishes,
under suitable hypotheses, that |Ag,| S f+e However, their proof of
Lemma 4 [11, page 65] requires |A,,| < 6§ + ¢, which is not substantiated by
these premises. O

The two examples cited above are definite flaws—the proofs are incor-
rect as stated. In repairing these flaws we faced a choice: we could ei-
ther continue to work with the approximations—attempting to get them
right—or we could reexamine the whole use of approximations and investi-
gate whether the proof could be carried through with exact inequalities. We
chose the latter course. Our motivation was largely aesthetic—we found the
use of approximations, and especially the potential appearance of approxi-
mate bounds in the statement of the main theorem, to be very unsatisfying.
The use of approximate relations also cluttered the mechanical verification—
unlike exact arithmetic relations, which are built into our specification lan-
guage and theorem prover, the approximate relations had to be explicitly
axiomatized and, more tediously, cited wherever they were needed. We had
also come to doubt Lamport and Melliar-Smith’s belief that the use of ap-
proximations simplified the unmechanized calculations—on the contrary, we
found that the need to assure ourselves of the correctness of the approxi-
mations was a major complicating factor in understanding their published
proof.

Accordingly, we revised the published proof, adding additional terms
where necessary so that' exact equalities and inequalities could be used.
This proved to be quite straightforward and, to us at least, the resulting
proof (presented in the previous chapter) is no more complicated than that
published by Lamport and Melliar-Smith, and the use of exact bounds is
more satisfying. The revisions necessitated by the use of exact inequalities
are few and are listed below. Notice that in a couple of cases, the changes
are simplifications.

Constraint C5 is changed from
5§ 6 +pR

to
6> 6+ pR.

Constraint C4 is changed from

Arcbd+e

32 Comparison with Analysis of Lamport and Melliar-Smith

to
A26+e+’2-’s.

Constraint C6 is formulated as follows by Butler et al. [5]:
2mA npR
+ .
n-m n-—m
Lamport and Melliar-Smith use A s & + € to eliminate A and state

§>2(e+pS)+

the bound as
§ X n'(2¢+ p (R +25")),
where
n
n = — and
st = 2 %g
n
We prefer Butler’s form and state the revised constraint as
2mA npR npX
§ > 2(e+pS) + T LIRS YN
n-m n-m n-—-m
Lemma 1: The conclusion is changed from
|Agpl S+
to .
Al <A

Lemma 4: The conclusion is changed from
[e§UT) + Brp = [eUT) + Aroll = 2(e + pS)

to
<O(T) + AY — [e(T) + AW < 2(e+ pS) + pA.

3.4 The Interval in which a Clock is a “Good
Clock”

Several lemmas use Definition 1 (the notion of a good clock) and Assumption
A1l (a nonfaulty processor has a good clock) to establish bounds on certain
quantities. In order to apply these definitions, we must establish that the
times concerned fall in the interval during which the processor is hypothe-
sized to be nonfaulty. The statements and proofs of Lemmas 1 and 2 [11,
page 64] do not do this with sufficient care and both are false as stated.

3.4. The Interval in which a Clock is a “Good Clock” 33

3.4.1 VFalsehood of Lemma 1

Lamport and Melliar-Smith’s proof of Lemma 1 readily establishes
e (To) — ¢ (To + Agp) < 6+ ¢

where Ty € SU). The next step is to use the fact that p is nonfaulty up
to T(+1) to allow use of Definition 1. In order to be able to do this, it is
necessary to show that

To + Agp < TEH,

This constraint is not true in general—T} could be as large as T(*+1) and
Agp > 0. However, Lemma 1 is only used when p is known to be nonfaulty
up to T(+2) g0 a plausible repair would change the statement of the Lemma
to require that p be nonfaulty up to T(+2), Then we would merely need to
show that

Since Tp < T(+) and T(+2) = T(+1) 4 R and A, is small, this seems
straightforward. However, although A, is assumed small, and the purpose
of this very Lemma is to show it is less than A, there is no a priori bound
on its value and therefore no basis to establish (3.1).} Hence, this putative
proof of even the repaired version of Lemma 1 is flawed. In our proof, we
introduce

af<s

as an explicit conjunct in Assumption A2. This is sufficient to substantiate
our use of Definition 1. .

Notice that satisfaction of this strengthened statement for Assumption
A2 must be justified for any realization of the Algorithm.

It might seem that we could establish that Agp must be very small by using the facts
the p and ¢ were synchronized during the previous period and cannot have drifted very
far since then. This argument, however, merely shows that a suitably small Agp must
exist—it does not guarantee that this will be the value that is actually obtained. It is
possible that a very large value will be returned and that the constraint

e (T" + Bgp) = efNT") < €

will be satisfied adventitiously because the large value for A, takes p’s clock beyond the
interval in which it is a good clock—so that ¢/’ (T + A,,) may have any value whatever.

34 Comparison with Analysis of Lamport and Melliar-Smith

3.4.2 Falsehood of Lemma 2

There is a similar problem in the proof of Lemma 2. In order to substantiate
the use of Assumption Al, it is necessary to ensure that

Ag)(T-i-H) < A}(’i+1)(T(t’+2))
where T € SU) and |TT| < R. Expanding definitions, this requires

where 0 < & < S. For the case where ® = 0,IT > 0, and using S2, this
reduces to
N<R-X

which is not ensured by the condition |II| < R. Similar difficulty arises in
satisfying the lower bound to the interval required for application of Al.

In our proof we introduce several variations on Lemma 2, each with
tighter bounds on II and/or T, and we also introduce the new constraints
C1 (35S < R) and C2 (Z < S) in order to overcome these difficulties. These
particular constraints were chosen for simplicity, and because we felt that
there would be no difficulty satisfying them in any likely implementation.
Alternative constraints are feasible, and would require minor modifications
to the proof.

3.5 Sundry Minor Flaws and Difficulties

3.5.1 Falsehood and Unnecessary Generality of Lemma 3

As stated, the Lemma is false because the bounds on II are insufficiently
tight to substantiate use of Assumption Al (the argument is exactly the
same as that for Lemma 2). However, II is instantiated with O the only
time that the Lemma is used (in Lemma 4). In our proof, we discarded the
parameter I1, thereby correcting and simplifying the statement and proof of
the Lemma.

38.5.2 Missing Requirements for Clock Synchronization
Condition S2

The proofs of Lemmas 1 and 3 use Assumption A2, which requires that S2
should hold. Since Lemma 4 uses Lemmas 1 and 3, its statement should

3.5. Sundry Minor Flaws and Difficulties 35

also require that S2 hold. The statements of all three Lemmas omit this
condition.

As stated, Lemma 2 also requires that only S1 hold. When other nec-
essary corrections to the statement and proof of the Lemma are made, it
becomes necessary to require that S2 hold as well (in order to bound the
extent to which the interval [T0(+1), T(i+2)] can “shrink” when the correction

C,(,Hl) is applied).

3.5.3 Typographical Errors in Lemmas 2 and 4

The conclusion to the first part of Lemma 2 states that a certain quantity
is strictly less than (£) II. This should be (£) |I1].
The conclusion to Lemma 4 is stated as

1c8UT) + Arp = [e(T) - A,)] < 2(c + pS).
It should read
Icg)(T) +A,, - [cgi)(T) +Arq]| < 2(e+ pS).

These seemn to be no more than typographical errors.

Chapter 4

Formal Specification and
Verification in EHDM

In this chapter we describe the formal specification of the Interactive Con-
vergence Clock Synchronization Algorithm and its mechanical verification
using the EHDM formal specification and verification environment. This
entails encoding the Algorithm and its supporting definitions, assumptions,
lemmas, and theorems in the specification language of EHDM, and then
proving those lemmas and theorems with the help of the EHDM theorem
prover.

We begin with an overview of those features of EHDM and its specifi-
cation language that are necessary for an understanding of this particular
application, then we describe our application of the system to the Interactive
Convergence Clock Synchronization Algorithm.

4.1 Overview of EHDM

The EHDM Specification and Verification System is an interactive system for
the composition and analysis of formal specifications and abstract programs
written in the EHDM specification language. Its development by the Com-
puter Science Laboratory of SRI International is sponsored by the National
Computer Security Center.

A general overview of EHDM is provided in [18], where further references
may also be found. EHDM is written in Common Lisp and implementations
are available for Symbolics and Sun workstations. The specification and

36

4.1. Overview of EHDM 37

verification described here was performed on a Sun workstation using EHDM
Version 4.1.4.

Our specification and verification of the Interactive Convergence Clock
Synchronization Algorithm uses only some of the capabilities of EHDM.
Specifically, it uses unparameterized modules, the functional component of
the specification language, the ground prover, and the proof chain analyzer.}
In this section we will describe only those parts of EHDM that are needed
to understand our specifications and proofs for the Interactive Convergence
Clock Synchronization Algorithm. Readers who wish to know more about
EHDM should consult the references cited earlier.

4.1.1 The Specification Language

The fragment of the EHDM specification language used here is a strongly
typed version of the First-Order Predicate Calculus, enriched with elements
of other logics—specifically Higher-Order Logic and the Lambda Calculus.
The two volumes by Manna and Waldinger [13, 14] provide an introduction
to some of these topics that is especially suitable for computer scientists;
Andrews [3] gives a more detailed treatment, including a good discussion of
Higher-Order Logic.

4.1.1.1 Declarations

The EHDM specification language allows the declaration of five different sorts
of entities: types, variables, constants, formulas, and proofs. There are six
built-in types in EHDM (that is, types which for which the system provides
an interpretation). The five of interest here are the rational numbers (in-
dicated by the identifier number), the integers (indicated by the identifiers
integer or int), the natural numbers (indicated by the identifiers natu-
ralnumber or nat), the booleans (indicated by the identifiers boolean or
bool), and the function types (which are described shortly). In addition,
the user may introduce uninterpreted types, type synonyms, and subtypes.
Here, we use only the built-in types, plus type synonyms. The declaration

17The capabilities not used here include parameterized modules and assuming clauses,
mapping modules, the procedural component of the specification language, the instan-
tiator for the theorem prover, the Hoare-Sentence prover, the Ada Translator, and the
multilevel security analyzer. We plan to construct a procedural description of the In-
teractive Convergence Clock Synchronization Algorithm at some time in the future; this
will enable us to demonstrate the procedural component of the specification language, the
Hoare-Sentence Prover, and possibly the Ada Translator.

38 Chapter 4. Formal Specification and Verification in EHDM

clocktime: TYPE IS number

introduces clocktime? as a synonym for the natural numbers (equivalently,
we can think of the natural numbers as supplying the interpretation for the
type clocktime).

Variables are introduced by declarations of the form

Ti, T2: VAR clocktime
while uninterpreted constants are introduced by declarations of the form
T_ZERO: clocktime

Constants of a built-in type can be given an interpretation using a literal
value of that type, for example:

T_ZERO: clocktime = O
Function types are written as follows:

X: TYPE IS function[processor, period, clocktime -> realtime]

where the type-identifiers preceding the -> indicate the domain of the func-
tion type, and that following indicates the range.

EHDM is a higher-order language, so that function types may have other
function types in their domain or range, for example

foo: TYPE IS function[nat, nat, function[nat -> number] -> number]
Functions are simply constants of a function type:
correction: function[processor, period -> clocktime]

There is no special notation for predicates; a predicate is simply a function
with range bool:

goodclock: function[processor, clocktime, clocktime -> bool]

It is also perfectly feasible to have variables of a function type:

2EHDM identifiers consist of a letter, followed by a sequence of letters, digits, and the
underscore character. Identifiers are case sensitive: t1 and T2 are different identifiers. The
keywords of EEDM are not case sensitive, however: type, TYPE, and even tYpE all denote
the same keyword. By convention we put keywords in upper case. (This is the default
used by the EEDM prettyprinter.)

4.1. Overview of EHDM 39

prop: VAR function[nat -> bool]

Literal values of a function type are denoted using lambda-notation, and
may be used to give an interpretation to a function constant. The following
specification fragment gives an example.®

P: VAR processor
i: VAR period
T: VAR clocktime

adjusted: function[processor, period, clocktime -> clocktime] =
(LAMBDA p, i, T -> clocktime: T + correction(p, i))

Formula declarations have the following schema:
name: KEY value

where the name is simply an identifier that is used to refer to the formula,
KEY is one of the keywords FORMULA, AXIOM, LEMMA, or THEOREM,* and
value is boolean-valued expression.

Expressions can be built up from the usual propositional connectives
(which are written as NOT, AND, OR, IMPLIES, and IFF), universal and
existential quantification, function application (written in the usual prefix
notation—e.g., adjusted(p, i, T)), equality (written as =),5 disequality
(written as /=), the usual arithmetic operations (written as -, +, * and
/), and the relations of arithmetic inequality (written as <, <=, >, and
>=). There is also a three-place if-then-else operator that is written, for
example, as:

abs_def: AXIOM abs(x) = IF x < O THEN -x ELSE x END IF

Quantified expressions are written in the following form:

8Notice that unlike many programming and specification languages, EBDM declarations
are not terminated by a semi-colon.

“These four keywords are almost equivalent (AXIOM is actually distinguished from the
other three). However, they are meant to be used in a way that indicates the specifier’s
intention: an AXIOM is something intended to be taken as primitive, while LEMMA and
THEOREM indicate something that will be proved. We use FORMULA to indicate something
that ought to be proved but is not (i.e., a *temporary® axiom). The EEDM Proof-Chain
Checker is used to ensure that all non-AXIOMs are ultimately consequences only of AXIOMs
and PROOFs.

5The symbol = denotes logical equivalence when its arguments are of type boolean—it
is a synonym for IFF in this case.

40 Chapter 4. Formal Specification and Verification in EHDM

R: clocktime

T, PI: VAR clocktime

i: VAR period

T_sup: function[period -> clocktime]

in_R_interval: function[clocktime, period -> boolean]

Rdef: AXIOM in_R_interval(T, i) =
(EXISTS PI: O <= PI AND PI <=RANDT = T_sup(i) + PI)

Free variables in EHDM formulas are treated as if they are universally quan-
tified at the outermost level (i.e., formulas denote their universal closure).
Thus, the following is equivalent to the AXIOM of the same name given earlier:

abs_def: AXIOM (FORALL x: abs(x) = IF x < 0 THEN -x ELSE x END IF)

It is generally easier to read formulas when this outer level of quantification
is omitted.

EHDM permits overloading of function names and provides subtype-to-
supertype coercions. This is of some importance when dealing with arith-
metic. The naturals are defined as a subtype of the integers, which in turn
are defined as a subtype of the (rational) numbers. The binary arithmetic
functions and relations require both their arguments to be of the same type;
the function and relation symbols actually denote different functions ac-
cording to the type of their arguments. If an arithmetic function or relation
is supplied with arguments of different types, then a subtype to supertype
coercion is applied until the types match. Thus, in the following fragment

n: VAR nat
: VAR int
r: VAR number

[N

X: FORMULATr =i + n

it is addition on the integers that is supplied as the interpretation of the +
sign (n is coerced to integer), the result is coerced to a (rational) number,
and the equality function used is that for the (rational) numbers.

4.1.1.2 Modules

Specifications in EHDM are structured into named units called modules in
much the same way as programs written in modern programming languages
are composed of similar units (e.g., packages in Ada). A module serves

4.1. Overview of EHDM 41

to group related concepts together and delimits the scope of names. An
(unparameterized) EHDM module consists of three parts, any of which may
be empty: an import/export part, a theory part, and a proof part.

Declarations of all the forms described above may appear in both the
theory and proof parts (except that AXIOMs may not appear in a proof part).
Types and constants declared in the theory part may be made visible to the
theory parts of other modules by listing them in the exporting part—ifor
example:

EXPORTING R, in_R_interval

Other modules gain access to these names by citing the name of the module
in which they are declared in their USING clauses (as the import list is called
in EHDM). A module A which imports a module B may re-export all the
names imported from B by adding a WITH clause to its own exporting list:

USING A
EXPORTING p, q, x* WITH A

This makes all the names exported by A visible to any module that imports
B, without that module having to import A explicitly.

All names declared in a theory part, whether exported or not, are visible
inside the proof part of any module that imports the module concerned.
Conversely, nothing declared in a proof part is ever visible outside that
proof part.

The reader should now have enough understanding of the specification
language of EHDM to be able to read the simple module example, which is
a simplified form of the module clocks used in the actual specification of
the Interactive Convergence Clock Synchronization Algorithm. The module
(which has no proof part) is shown in Figure 4.1

4.1.1.3 Proofs

EHDM proof declarations provide information that tells the EHDM theorem
provers how to prove the formula concerned. There are two main theorem
proving components in EHDM: the ground prover, and the proof instantia-
tor. All the proofs described here were done with the ground prover. The
following description covers both provers.

A proof declaration in EHDM has the general form

name: PROVE conclusion FROM premisel, premise2, premise3

42 Chapter 4. Formal Specification and Verification in EHDM

example: MODULE
USING time
EXPORTING proc, clock, rho, Corr, adjusted WITH time
THEORY

proc: TYPE IS nat

rho: number

rho_pos: AXIOM half(rho) >= 0

clock: function[proc, clocktime -> realtime]

p: VAR proc

T, TO, T1, T2, TN: VAR clocktime

goodclock: function[proc, clocktime, clocktime -> booll

gc.ax: AXIOM

goodclock(p, TO, TN)
= (FORALL T1, T2 :
TO <= T1 AND TO <= T2 AND T1 <= TN AND T2 <= TN
IMPLIES abs(clock(p, T1) - clock(p, T2) - (T1 - T2))
< mult(balf(rho), abs(Ti - T2)))

Corr: function[proc, period -> clocktime]

zero_correction: AXIOM Corr(p, 0) = 0

i: VAR period

adjusted: function[proc, period, clocktime -> clocktime] =
(LAMBDA p, i, T -> clocktime : T + Corr(p, i))

END example

Figure 4.1: An Example EHDM Specification Module

4.1. Overview of EHDM 43

where the conclusion and the premises (there can be any number of
premises) are the names of formulas. This declaration indicates that the
conclusion is to be proven to be a valid consequence of the premises—
i.e., p1,p2,ps I ¢ in the conventional notation of logic. By the deduction
theorem, this is equivalent to - p;,ps2,p3 O ¢, which is equivalent to the
unsatisfiability of

—cAp1 Aps Aps (4.1)

The theorem provers of EHDM are refutation-based provers, and their
strategy is to attempt to show that (4.1) (i.e., the conjunction of the premises
and the negated conclusion) is unsatisfiable. The first step on the way to
accomplishing this goal is to reduce (4.1) to an equivalent quantifier-free
form by the process of Skolemization. The details of Skolemization are
somewhat tedious to describe (see [14] for a general explanation) but the
important point is that the existentially quantified variables in the premises,
and the universally quantified and unquantified variables in the conclusion,
are replaced by constants.®

If the remaining variables in the quantifier-free formula resulting from
Skolemization are substituted with expressions made up of constants (such
expressions are called ground terms), then (ignoring arithmetic for the mo-
ment) the result will be a formula of the Propositional Calculus. Since
Propositional Calculus is decidable, it can be readily determined whether
this formula (which is called a ground instance of the original predicate calcu-
lus formula (4.1)) is unsatisfiable. If it is, then so is (4.1)—which means the
original theorem has been proven. If the ground instance is not unsatisfiable,
it does not mean that (4.1) is unsatisfiable, nor that the original theorem
is false—it means only that the particular set of ground substitutions cho-
sen did not establish the theorem. However, by the Herbrand-Skolem-Godel
theorem, we know that if the original theorem is valid, then there exists
some set of substitutions that produces an unsatisfiable ground instance.

The ground prover of EHDM is simply a decision procedure for the com-
bination of propositional calculus with equality over uninterpreted function
symbols, plus “extended quantifier-free Presburger arithmetic’ for both the
rationals and integers” [17]. Proof declarations for the EHDM ground prover

$This description ignores the effects of explicit and implicit negations (the latter are
introduced by implications and equivalences). More precisely, it is the odd variables in the
premises and the even ones in the conclusion that are replaced by constants—and those
constants may be functions in the general case.

"This includes unary minus, addition and subtraction, multiplication by constants,
equality and disequality, together with the relations <, <, >, and >.

44 Chapter 4. Formal Specification and Verification in EHDM

must indicate the substitutions to be used to produce the ground instance
that is submitted to the ground prover. Substitutions are indicated as fol-
lows:

name {vi <- el, v2 <- e2, ... , vn <- en}

where name is a formula name appearing in a PROVE declaration as either the
conclusion or a premise, the vi’s are substitutable (unSkolemized) variables
of the formula, and the ei’s are ground terms. For example:

abs_proof0O: PROVE abs_ax0 FROM abs_ax {a <- 0}

Not all substitutions involve literal constants; most refer to the Skolem or
substitution instances of variables in other premises or in the conclusion.
The notation for this appends an “@” sign and a qualifier to the variable con-
cerned. Thus the substitution x <- y@c means “substitute for x whatever
is substituted for y in the conclusion,” and x <- y@p3 means “substitute for
x whatever is substituted for y in the 3’rd premise.” More complex forms,
such as x <- yQ@c+z0p3 are perfectly acceptable. When function variables
are concerned, the substitutions may involve LAMBDA terms.

The number of substitutions that must be given explicitly is greatly
reduced by application of a number of default rules. If no qualifier is given
(as in the substitution x <- y), then y is interpreted to mean “the instance
of y in the conclusion, if there is one, otherwise the instance from this
premise.” If no substitution at all is given for a variable, then (for the case
of a variable x) the substitution x <- x is supplied automatically (and the
interpretation of the missing qualifier will be supplied by the previous rule).

This all sounds much more complicated than it really is. A typical proof
(from the module time in the specification) is shown below:

inRS_proof: PROVE inRS FROM Sdef, Rdef {PI <- R-S+PICp1}, SinR

The mechanics of doing a proof in EHDM are that the user moves the cur-
sor to the proof declaration of interest and presses the “prove” button. (The
interface to EHDM is a screen editor with mouse-sensitive pop-up menus.)
In the fullness of time, the system will report either “proved” (meaning just
that) or “unproved” (meaning either that the theorem is false, or that it
is true, but the premises and substitutions provided are not sufficient to
establish that fact). There is no direct interaction with the ground prover;
all the interaction is through the specification text (though there are some
proof-debugging tools). In addition to the commands for performing a single

4.1. Overview of EHDM 45

proof, there are commands for doing all the proofs in a module, or all the
proofs in a module and all those modules that it uses.

It will be clear from our description that the ground prover of EHDM
is really a proof checker: all the creative work is in the selection of the
premises and of the substitutions—and this is performed by the user. EHDM
contains another theorem proving component called the instantiator that
can perform some of these tasks automatically. Specifically, the instantiator
tries to supply the substitutions needed to make a proof succeed. If it finds
the correct substitutions, it can write them back into the specification text
so that in future the ground prover will be able to perform the proofs on its
own.

The instantiator is a full first-order theorem prover: it can prove any
true theorem of first-order predicate calculus. However, its effectiveness
in finding suitable substitutions is considerably diminished in the presence
of interpreted symbols, such as those for equality and arithmetic. (For
example, it succeeds on only 4 of the 12 proofs in the module absolutes
if all the explicit substitutions are deleted.) Since the specifications of the
Interactive Convergence Clock Synchronization Algorithm make heavy use
of arithmetic, we did not use the instantiator in this effort. The powerful
arithmetic capabilities of the EHDM ground prover were crucial to our ability
to perform this work.

4.1.1.4 Other Components of the EHDM System used in the Proof

Proof Chain Checker. The notion of “proof” that is established by the
EHDM theorem prover is a local one: it assures us that the conclusion is
indeed a valid consequence of the premises. But it does not tell us whether
those premises are axioms or theorems, and if the latter, whether or not
they have been proved. This larger scale analysis is performed by an EHDM
tool called the “Proof Chain Checker.” The Proof Chain Checker can be
invoked with either a PROVE or a FORMULA declaration as its target. In the
latter case, it first searches for a proof of the formula concerned; in either
case it then recursively examines the status of all the premises named in the
proof. Proof Chain Analyses for the clock synchronization conditions in our
specification are given in Appendix C.

Prettyprinters. The written appearance of specifications has a significant
impact on the ease with which they can be read, understood—and written.
The concrete syntax of the EHDM specification language attempts to be close

46 Chapter 4. Formal Specification and Verification in EHDM

to traditional mathematical and logical notation. A rather sophisticated
prettyprinter helps ensure a uniform lexical style for specifications. The
specification listings in Appendix D were produced by the prettyprinter.

Even given the relatively straightforward concrete syntax of EHDM, it
can still be hard to read specifications composed of long series of func-
tion applications. Thus, we developed a table-driven “IATgpX-printer” for
EHDM that converts EHDM specifications into IATRX input. This can then
be processed by IATgX to produce very readable specifications, with two-
dimensional layout including sub- and superscripts and “mix-fix” function
symbols. For example, a functional expression in EHDM

abs(c(p, i, T) - c(q, i, T))

can be converted to the more comprehensible notation
|e)(T) - (7).

When a function name is used alone (for example, in a declaration), it is
printed as a template indicating argument positions. Thus, for example,

A,(;;z)(*3): function[proc, period, clocktime — clocktime]

makes it clear that the first argument will appear as a subscript, the second
as a parenthesized superscript, and the third in normal parentheses. We ex-
pect this tool to become a very useful addition to the EHDM environment,
since it greatly assists the reading of specifications and should thereby con-
tribute greatly to the peer review and evaluation of EHDM specifications.
The IATgX-printed version of the example from Figure 4.1 is shown in Fig-
ure 4.2.

We used the IATgX-printer to convert our EHDM specifications into the
exact notation used by Lamport and Melliar-Smith; the listings in TEX
form are given in Appendix B. The translations used for the EHDM identi-
fiers are displayed in Table A.1 of Appendix A.

Cross-Reference Tools. There are nearly 300 EHDM identifiers declared
in our specification of the Interactive Convergence Clock Synchronization
Algorithm. Keeping track of the declarations and uses of these identifiers
could become quite burdensome, so the EHDM environment provides simple
cross-reference functions to assist in this task. Two of these functions allow
the user to locate and jump to the declarations and uses, respectively, of a

4.1. Overview of EHDM

example: Module

Using time

Exporting proc, ¢,1(x2), p, ng) , Aﬂ:z) (x3) with time
Theory

proc: TYPE IS nat

p: number

rho_pos: Axiom £ >0

¢«1(*2): function[proc, clocktime — realtime]

p: VAR proc

T,To,T1, T2, Tn: VAR clocktime

goodclock: function[proc, clocktime, clocktime — bool]

gc.ax: Axiom
goodclock(p, To, T)
=(VTy, Ty
LH<TIATG ST ATy <TNAT <Tn
> lep(Ta) — p(Ta) = (T3 - Ta)| < § x [Ty — Ty])

C,(,Iz): function|proc, period — clocktime]

zero_correction: Axiom C',(,o) =0

i: VAR period

AS;Z) (*3): function[proc, period, clocktime — clocktime] =
(Ap, i, T— clocktime : T + C")

End example

Figure 4.2: IATpX-printed Example EHDM Specification Module

47

48 Chapter 4. Formal Specification and Verification in EHDM

given identifier; the third provides a tabular cross-reference to all declara-
tions in a given EHDM library. (EHDM allows specification modules to be
collected into “libraries” and manipulated as a group.) ’

The table produced by this third function of the EHDM cross-reference
tool is given in Tables A.2 to A.14 in Appendix A.

4.2 The Formal Specification and Verification of
the Algorithm

A formal specification generally divides into two components: one directly
concerned with the problem at hand, and another in which are developed
all the “supporting theories” needed in the first but peripheral to its main
purpose. The supporting theories provide the “background knowledge” that
we would like to be able to assume in order to get on with the main problem.
With a formal specification system, the built-in “background knowledge” is
generally very limited (usually it is little more than predicate calculus with
equality) and the construction of explicit specifications for the supporting
theories may often consume the greater part of a specification effort. It
has been recognized for a long time that the development of certified li-
braries of generally useful supporting theories would be one of the most
useful contributions to reducing the cost and increasing the reliability of
formal specifications. The module library mechanism of the EHDM system
provides a suitable framework for standard modules; however, the libraries
have not yet been populated.

Examination of Chapter 2 will show that the background knowledge
used in the specification and analysis of the Interactive Convergence Clock
Synchronization Algorithm includes a significant amount of arithmetic, in-
cluding inequalities, absolute values, and summations, but not much else.
Since we define a good clock without recourse to differentiation, we avoid
the need for real numbers and can use the rationals to represent time.

As mentioned earlier, integer and rational arithmetic are built into
EHDM. Thus, the only supporting theories for arithmetic that we need to
specify explicitly are those for absolute values and for summation. Because
EHDM uses a higher-order logic, induction schemes are provided axiomati-
cally, rather than being built in as rules of inference; consequently, we will
also need a supporting theory to provide a suitable induction axiom.

Our specification and verification of the Interactive Convergence Clock
Synchronization Algorithm is described in the three subsections following.

|

4.2. The Formal Specification and Verification of the Algorithm 49

First we describe the EHDM modules that provide the supporting theories,
then those that build up the specification of the Algorithm, and finally those
that develop the proof that the Algorithm maintains synchronization. List-
ings of the specification modules described here are given in IATEX-printed
form in Appendix B and in raw form in Appendix D. Cross-references are
provided in Appendix A.

4.2.1 Supporting Theories

Seven modules provide supporting theories for the specification.

4.2.1.1 Absolutes

Absolute values are used extensively in the specification. It would be entirely
feasible to specify the absolute-value function in EHDM by the definition

a: VAR number
abs: function[number -> number] =
(lambda a -> number: if a<0 then -a else a end if)

However, this would result in the definition being expanded everywhere it
appeared—which would work, but would slow the theorem prover down
considerably.® Thus we chose to specify the abs function by means of an
explicit axiom, so that we could control when the definition is expanded.

a: VAR number
abs: function[number -> number]
abs_ax: AXIOM abs(a) = if a<0O then -a else a end if

We could have stopped there, but decided it would be preferable to build up
a collection of useful proved results about the abs function. We were partly
motivated by concerns for theorem proving efficiency, and partly by a desire
to make our proofs as readable as possible. For example, if a proof needs
the property |z + y| < |z] + |y], it is not only more efficient to supply this
to the theorem prover explicitly (rather than merely provide abs_ax), but
it also makes it easier for a reader to follow the proof. This use of derived
properties (rather than referring everything back to definitions) is, of course,
quite normal in traditional mathematical presentations. A collection of some
dozen elementary results of this kind are collected and proved in the module
absolutes.

*For example, expanding the definition of abs will only complicate the proof of the
formula a=b IMPLIES abs(a)=abs(b).

50 Chapter 4. Formal Specification and Verification in EHDM

In addition, the module absolutes contains two axioms that state prop-
erties of the absolute value function in the presence of multiplication and
division:

abs_times: AXIOM abs(a*b) = abs(a) * abs(b)

abs_div: AXIOM b /= 0 IMPLIES abs(a / b) = abs(a) / abs(b)

As explained in more detail in the following subsection, multiplication and
division are largely uninterpreted in EHDM so it is necessary to introduce
properties such as these either by means of explicit axioms, or as derived
consequences of a more primitive axiomatization for multiplication and di-
vision. We have chosen the former course.

4.2.1.2 Arithmetics

Although we said earlier that most of the arithmetic needed was built-
in to EHDM, we were not quite telling the truth. EHDM supports linear
arithmetic—that is multiplication by constants only. Several of the formulas
and constraints needed in the specification and verification of the Interac-
tive Convergence Clock Synchronization Algorithm require use of nonlinear
multiplication, and also division—e.g., terms such as ;"{% appear in the
constraint C6.

Although it has a special syntactic form (the infix /), division is unin-
terpreted in EHDM—the user must supply appropriate axioms just as if it
were a newly introduced function. Ideally, EHDM should provide a library
module containing a “standard” axiomatization for division, but this is not
done at present. Accordingly, we provide some ad hoc axioms for division
in the module arithmetics. These axioms and the lemmas derived from
them are adequate for the present purpose, but we have made no attempt
to construct a minimal or a complete set. The three axioms that we use are
shown below (the axiom abs_div in module absolutes is also relevant).

quotient_ax: AXIOM y /= O IMPLIES x / y = x * (1 / y)
quotient_axl: AXIOM x /= O IMPLIES x / x = 1
quotient_ax2: AXIOM z > O IMPLIES 1 / z > O

Several additional properties of division are stated and proved from these
axioms.

Multiplication by literal integer constants is treated as repeated addition
by EHDM, and the ground theorem prover is able to fully decide formulas
containing such constructs. Nonlinear multiplication can also appear in

4.2. The Formal Specification and Verification of the Algorithm 51

EHDM specifications, but is treated as an “almost” uninterpreted function.
It might be better, in fact, if it was completely uninterpreted—so that the
user could supply and invoke appropriate multiplication axioms under ex-
plicit control. As it is, the ground prover of EHDM contains heuristics that
enable it to prove certain results involving nonlinear multiplication, but
these heuristics render the ground prover incomplete (i.e., it is no longer a
decision procedure)® —which is unacceptable, given the proving paradigm
used in EHDM.

Consequently, the ground prover contains conservative checks that abort
the proof if there is any possibility that the presence of nonlinear multipli-
cation will take it beyond its domain of completeness. The only thing to do
when a proof aborts in this way is to define a new, uninterpreted multipli-
cation function and use that instead of the built-in function when nonlinear
multiplication is required. The semantics of the new multiplication function
have to be provided by explicit axiomatization.1®

Thus, in the module arithmetics, we define a function mult on the
rationals and give it the semantics of multiplication by the axiom

mult_ax: AXIOM mult(x, y) = x * y

We introduce two additional axioms

multl: AXIOM x >= O AND y >= O IMPLIES mult(x, y) >= 0
mult_mon: AXIOM x < y AND z > O IMPLIES mult(x, z) < mult(y, z)

since attempts to derive these results from the first cause the prover to abort
and report that it is outside its domain of completeness. Several additional
properties of mult are stated and proved from these two axioms.

The quantity § appears frequently in the proof. We encode this in the
function half defined by the following axiom:

half_ax: AXIOM hali; (x) = x/2

We also state and prove a couple of derived properties of this function.

The module arithmetics is completed by the statement and proof of
two arithmetic identities (rearrange and rearrange_alt) that are used in
a couple of other modules. Several other arithmetic identities of this form
are used only once each and are stated and proved in the modules where
they are required.

®There is no complete decision procedure for arithmetic with multiplication and there
is no syntactic characterization for the fragment of nonlinear arithmetic that is decided
by the EEDM ground prover.

10We are actively considering changes in the way EADM handles nonlinear multiplication
as part of a review of the prover strategies.

52 Chapter 4. Formal Specification and Verification in EHDM

4.2.1.3 Natprops

EHDM does not define a subtraction operator on the natural numbers. The
naturals are treated as a subtype of the integers in EHDM, so that the ex-
pression n - m, where n and m are naturals, is interpreted by coercing those
values to type integer, and then applying the integer subtraction opera-
tor to yield an integer result. In our treatment of summations, we need
subtraction-like operators on the naturals, and these are defined axiomati-
cally in the module natprops. The predecessor function, pred, and a sub-
traction function diff are defined as follows:

pred: function[nat -> nat]
pred_ax: AXIOM n /= O IMPLIES pred(n) = n - 1

diff: function[nat, nat -> nat]
diff_ax: AXIOM n >= m IMPLIES diff(n, m) = n - m

Several derived properties of these two functions are stated and proved in the
module natprops. In addition, we assert that the naturals are nonnegative
using the following axiom:

natpos: AXIOM n >= 0

This is necessary because EHDM treats the naturals as simply a subtype of
the integers that is closed under addition; no other properties of the naturals
are built into the prover.

4.2.1.4 Functionprops

The module functionprops defines the (higher—ordef) axiom of function ex-
tensionality. This is required for one of the proofs in the module sigmaprops.
We define this axiom for functions of exactly the signature we require (i.e.,
nat -> number) rather than for the more general case (i.e., number -> num-
ber) because the present version of the EHDM typechecker does not handle
higher-order subtypes.

F, G: VAR function[nat -> number]
x: VAR nat

extensionality: AXIOM (FORALL x : F(x) = G(x)) IMPLIES F = G

4.2. The Formal Specification and Verification of the Algorithm 53

4.2.1.5 Natinduction

The module natinduction provides a higher-order axiom called induc-
tionm used for inductive proofs. The axiom states a principle of simple
induction on the naturals using a predicate variable prop.

induction: AXIOM
(prop(m)
AND (FORALL i : i >= m AND prop(i) IMPLIES prop(i + 1)))
IMPLIES (FORALL n >= m : prop(mn))

Informally, it says that if prop is true for m, and prop (i) implies prop(i+i),
for arbitrary i >= m, then prop is true for all natural numbers n >= m.
Two special cases of this induction scheme are then introduced as lemmas:
induction is the case m = O and corresponds to the standard induction
scheme over the naturals; induction_1 is the casem = 1.

Module natinduction also introduces modified induction schemes called
mod_induction and mod_inductioni that are stated as lemmas and proved
from the basic induction m axiom. The modified scheme mod_induction is
used in the proof of Theorem_1 and is specialized for the proof of predicates
of the form A(s) D B(s). The inductive step in such cases has the form

(A() > B(#)) > (A(+1) > B(i +1)).
This is equivalent to
((A()) > BG)) AA(i +1)) > B(i + 1)
which, when we know in addition that A(i + 1) > A(s), reduces to
(A(i + 1) A B()) > B(+1).

This is the form for the inductive step that is stated in mod_induction and
proved in mod_induction_proof. The lemma mod_induction1 is derived in
a similar fashion.

Another induction scheme is introduced as an axiom: induction2 is
used in the proof of sigma_rev in module sigmaprops and is specialized for
the case when the proposition to be proved takes two arguments, and the
induction is over the second. It can be derived from the standard induction
scheme, with the addition of quantification over the first argument.

54 Chapter 4. Formal Specification and Verification in EHDM

4.2.1.6 Sums and Sigmaprops

Choosing how primitive the axiomatic basis for a supporting theory should
be is a matter of taste, conscience, and the time and funds available. Ideally,
each supporting theory should be built up from a small and primitive set
of self-evident, well-accepted axioms. Unfortunately, it may then require
a considerable expenditure of time and effort to build the body of verified
lemmas and theorems for the supporting theory that are needed to solve the
actual problem at hand. The alternative is to simply assert as axioms the
results that are actually needed from the supporting theory. The danger here
is self-evident—it is remarkably easy to state plausible, but false axioms.

When formal specification and verification is practised more widely, we
would expect that verified libraries of common supporting theories will be
available. In the meantime, we are confronted with a dilemma: either build
up the supporting theories from primitive axioms—and risk never getting to
the original problem of interest, or else concentrate on the original problem—
and risk building on sand. We pursued a variant of the second course in
developing this proof of the Interactive Convergence Clock Synchronization
Algorithm. In order to make progress on the main problem, we adopted ex-
pedient axioms at first, then as time has permitted, we went back to develop
the supporting theories with greater care and with a view to incorporating
them in libraries.

Our first verification of the Interactive Convergence Clock Synchroniza-
tion Algorithm used high-level axiomatizations of the concepts of summa-
tions and means from the module sums. Later, we developed a module
sigmaprops that establishes results very similar to those used in sums as
verified consequences of very primitive definitions. Later still, we replaced
all the axioms in module sums by equivalent lemmas that are proven from
those in sigmaprops. When time permits, we may make a final revision to
these parts of the specification in order to render them suitable for inclusion
in a library.

Sums. The module sums introduces two higher-order functions, called sum
(33(3)) and mean (:%(x3)), respectively. Each takes three arguments:
the first two are natural numbers, and the third is a function from the
natural to the rational numbers. The intended interpretation for sum is that
it sums the function supplied as its third argument from the value supplied
as its first argument to that supplied as its second. That is, in conventional
mathematical notation,

4.2. The Formal Specification and Verification of the Algorithm 55

i
sun(i, j, F) = EF(r)
r=¢
If 5y < 4, the value of sum is intended to be zero. The actual definition of
the function sum is accomplished by the axiom sum_ax in terms of the more
primitive function sigma which is described in the next subsection.

The axiom mean_ax specifies the (arithmetic) mean function in terms of
the sum function in the obvious way. The lemma mean_lemna simply restates
the definition of mean directly in terms of the more primitive function sigma.
Ten further lemmas then introduce additional properties of the sum and mean
functions.

The first, split_sum, states that under suitable conditions a summation
from ¢ to j is equal to the sum of two smaller summations: one from s to
k, and the other from k + 1 to j. split_mean, the corresponding result for
mean, is proved directly from split_sum.

Lemma sum_bound says that if a function is bounded by a constant z
throughout the range ¢ to 7, then its summation over that range is bounded
by z x (5 — ¢ + 1); the lemma mean bound states the corresponding result
for the mean function and is proved from sum_bound.

The lemmas mean const and mean.mult simply state that the mean of
a constant is that constant, and that the mean of a function multiplied by a
constant is the same as the mean of the function multiplied by the constant.
Mean_sum and mean diff state that the mean of the sum or difference of
two functions are equal to the sum or difference of the means. Abs_mean
states that the absolute value of a mean is less than or equal to the mean of
the absolute values. Finally, rearrange_sun states a simple property that
is needed in module summations.

The lemmas in module sums are derived from similar results stated for
the more primitive signa function in the module sigmaprops, which is
described next.

Sigmaprops. The module sigmaprops introduces a function sigma
(0(%1,%2,+3)) similar to sum described above. The significant difference,
however, is that whereas sum(i, j, F) is intended to denote the sum of F
from i to j, 0(i, n, F) is intended to denote the sum of F from i to i +
n - 1 (i.e., the sum of n terms).

Sigma is defined by the recursive definition sigma_ax and seven lemmas
concerning this function are then stated and proved. The names used for
the lemmas are in correspondence with those used for the lemmas in sums:

56 Chapter 4. Formal Specification and Verification in EHDM

for example, split_sigma in sigmaprops corresponds to split_sum and
split_mean in sums. The proofs in signaprops mostly use induction; the
induction schemes employed are from the module natinduction.

Some of the proofs in sigmaprops use a function revsigma which is
defined like sigma, but with the recursion going in the opposite direc-
tion. A lemma called sigma rev proves that these two functions are ex-
tensionally equal. A second function, called bounded, also used internally
by sigmaprops is introduced and defined by the axiom bounded ax. Since
they are used only by the proofs in signaprops, it might be preferable if the
declarations of revsigna and bounded, together with the axioms that define
these functions, were placed in the proof part of the module, rather than
the theory part. However, EHDM does not allow axiom declarations in the
proof section of a module. (Additional axioms change the theory, which is
supposed to be specified by the theory part.) The definitions for revsigma
and bounded could be moved to the proof section only if they were declared
as formulas; the proof chain checker would then report a dependency on
unproved formulas. A planned extension of the language by a facility for
defining auxiliary concepts will solve this dilemma.

4.2.2 Specification Modules

The specification of the Interactive Convergence Clock Synchronization Al-
gorithm is performed in three modules described below.

4.2.2.1 Time

The module time is the first one that introduces concepts directly concerned
with the Interactive Convergence Clock Synchronization Algorithm. It in-
troduces clocktime, realtime and period as types, and establishes the
rationals as the interpretation of the first two, and the naturals as the inter-
pretation of the third. R, S, and T_ZERO (T°) are introduced as constants
of type clocktime, and then the functions T_sup (T*1)), in R_interval
(x1 € R*?)), and in S_interval (x1 € S(*2)) are introduced and defined
(by the axioms T_sup_ax, Rdef, and Sdef) in the obvious way.

The constraint C1 (R >= 3 * 8) is defined here, and also the axioms
posR and posS which assert that R and § are both greater than zero. Several
straightforward lemmas are stated and proved.

4.2. The Formal Specification and Verification of the Algorithm 57

4.2.2.2 Clocks

The module clocks introduces proc (short for processor) as a type in-
terpreted by the naturals, and introduces the clock, correction, adjusted-
value, and logical clock functions: clock (c41(x2)), Corr (ng)), adjusted
(Ai;z) (*3)), and rt (c‘(&z) (*3)), respectively. The third of these is given an
interpretation in terms of the second. The fourth is defined axiomatically
(so that we can control its application) in terms of the first and third.

Next, the drift rate rho (p) is introduced as a constant of type ratio-
nal number, together with the predicate goodclock. The intention is that
goodclock(p, T1, T2) will be true when processor P is a good clock in the
clock time interval [T1, T2]. This is specified in the axiom gc-ax. Finally,
the predicate nonfaulty is introduced and the assumption Al is stated.
Whereas the informal statement of A1 says that if p is nonfaulty through
period 1, then (this implies that) p has a good clock during the correspond-
ing interval, the formal definition uses equivalence instead of implication.
This is necessary because we will later need to prove that if p is nonfaulty
through period ¢ + 1, then it is also nonfaulty through period 1.

Our definition of goodclock implies that a good clock is strict monotonic
increasing. This fact is stated as the Theorem monotonic ity and proved in
the proof part of module clocks.

4.2.2.3 Algorithm

The heart of the Interactive Convergence Clock Synchronization Algorithm
is defined in the module algorithm. We introduce m and n as constants of
type proc, and assert that n is nonzero (axiom CO_a) and that 0 <= m < n
(axiom €CO_b). The constants eps (), deltao (%), delta (§), and Delta
(A) are introduced and the constraints C2 to C6 are stated. The constraint

that Delta be strictly positive is also stated (as axiom €O_c).
*1)

Next, the functions Delta1 (A};"’), Delta2 (Afﬁzz), and D2bar (Ai’;?zz
are introduced, and the Interactive Convergence Clock Synchronization Al-
gorithm itself is specified in the three axioms Algl, Alg2, and Alg3.

The clock synchronization conditions are specified next. First, we define
a function skew: skew(p, q, T, i) is the skew between the logical clocks
of processors p and q in period i at clock time T (i.e., |c£‘)(T) - c((,i)(T)l)-In
the traditional mathematical presentation, we identified S1 with the require-
ment that the skew between nonfaulty processors should always be less than
6. However, we also need to consider the condition under which this bound

58 Chapter 4. Formal Specification and Verification in EHDM

should hold—namely that there should be at most m faulty processors. We
regard this condition as the antecedent to S1 and identify it with the predi-
cate S14; the bound on the skew between the clocks of nonfaulty processors
we consider the consequent of S1 and identify it with the predicate §1C. The
axiom S1Cdef states the bound on the acceptable skew between nonfaulty
processors p and g in period ¢, while the axiom S1Adef states the require-
ment that there should be at least m — n processors nonfaulty through that
period. The specification of this last requirement:

(FORALL r: (m+1 <= r AND r <= n) IMPLIES nonfaulty(r, i))

assumes that it is those processors numbered m + 1...n that are the non-
faulty ones. Clearly there is no loss of generality in this.

The clock synchronization condition S2, which is identified with the pred-
icate S2, is defined in the axiom 52_ax.

Finally, the two theorems which assert, respectively, S1A D S1C and 52
are defined. The proof of the latter is simple and is performed directly in
the proof part of the module algorithm.

4.2.3 Proof Modules

The proof of Theorem_2 (the Interactive Convergence Clock Synchronization
Algorithm maintains the clock synchronization condition S2) is provided
directly in the module algorithm. The proof of Theorem_1 (the Algorithm
maintains clock synchronization condition S1) spans 10 modules that are
described below.

4.2.3.1 Clockprops

The module clockprops is chiefly concerned with establishing some bounds
on A,(p') (T + TI) that are needed to establish Lemma 2. These bounds are
stated as the lemmas upper_bound, lower_bound, and lower bound2. A
subsidiary lemma called adj _always_pos is also stated; it is used in the proof
of lower_bound, which in turn is used to establish lower_bound2. The proof
of adj_always_pos itself requires an induction. The proof of upper.bound,
on the other hand, is straightforward.

The two lemmas nonfx and S1A_lemma complete the module clock-
props. The first states that if a module is nonfaulty through period ¢ + 1,
then it is certainly nonfaulty through period ¢. This is established as a con-
sequence of Al and the definition of a good clock (gc_ax). S1A_lemna states
the corresponding result for S1A, and is proved directly from nonfx.

4.2. The Formal Specification and Verification of the Algorithm 59

4.2.3.2 Lemmas 1to 6

These follow exactly the structure and naming described in Chapter 2. In-
deed, the description in that chapter was derived directly from the formal
specifications and proofs in these six modules.

Each lemma is stated and proved in a module with the appropriate
name. The result called Sublemma A is to be found as a subsidiary lemma
sublemma_A in the module lemma6.

4.2.3.3 Summations

The module summations is concerned with establishing the inductive step
needed in the proof of Theorem_1. This result is stated as the lemma called
culmination, and is proved from a series of intermediate lemmas named 11
through 15. .

The lemma 11 connects the main term in the conclusion of Lemma 6
with the averaging step performed by the Algorithm (specified in Alg2).
Lemma 12 splits the summation implicitly involved in 11 into two smaller
summations—one over the faulty processors and one over the nonfaulty ones.
Lemma 13 uses Lemma 5 to obtain a bound on the sum of the errors intro-
duced by the faulty processors; a subsidiary lemma called bound_faulty is
used in the process.

Lemma 14 uses Lemma 4 to obtain a bound on the sum of the er-
rors introduced by the nonfaulty processors; a subsidiary lemma called
bound nonfaulty is used in the process. The proof of this lemma uses
Theorem_1; we discuss this below (on Page 60).

Lemma 15 simply combines lemmas 12, 13 and 14; the culmination
lemma is proved by combining 16 with Lemma 6.

4.2.3.4 Juggle

The module juggle proves the lemma rearrange.delta. This result is a
straightforward algebraic manipulation and is quite simple to do by hand.
Its proof in EHDM, however, is rather tedious. The source of the difficulty
is the appearance of nonlinear multiplication. As explained earlier, the
EHDM ground prover is incomplete in the presence of nonlinear arithmetic.
Consequently, the module juggle contains several lemmas that essentially
switch between the interpreted multiplication symbol and the uninterpreted
mult function in order to establish some simple arithmetic identities. The

60 Chapter 4. Formal Specification and Verification in EHDM

main proof is then accomplished in 6 steps using intermediate lemmas named
stepl through step5.

4.2.3.5 Main

The module main provides the proof of Theorem_1. It uses the induction
scheme mod_induction from the module natinduction, with the main work
for the inductive step provided by the culmination lemma from module
summations. The rather grotesque arithmetic manipulation required to
complete the proof is provided by the lemma rearrange delta from the
module juggle.

As noted above, the inductive proof of Theorem.1 depends on the lemma
culmination from the module summations. The proof of culmination de-
pends on the lemma bound nonfaulty, whose own proof depends on The-
orem_1. Thus, there is a potential circularity in our proof of the theorem—
which is indeed detected by the EHDM proof chain checker. In fact, this
circularity is apparent, rather than real, as it occurs in the context of an
inductive proof, in which the theorem is used for i in the part of the proof
that extends it to i + 1. We are working towards constructing a proof
description that reflects this induction step more straightforwardly.

4.3 Statistics and Observations

The specification and verification described here was performed using EHDM
Version 4.1.4 running on a Sun workstation. EHDM is written in Common
Lisp; the current version for Sun workstations uses the Lucid 2.1 Common
Lisp implementation. The particular workstation used for this exercise was
a Sun 3/75 with 8 Mbytes of real memory and 56.5 Mbytes of swap space
on a lightly loaded Sun 3/160 file server with Fujitsu Eagle and Super-Eagle
disk drives and slow Xylogics controllers.

The specifications described here occupy 20 modules, comprising about
1,550 (nonblank) lines of EHDM. There are 166 proofs in the full speci-
fication and it takes about an hour to prove them all (a little under 18
seconds each, on average). It is hard to obtain accurate timing for individ-
ual proofs, since the occurrence of garbage collection introduces tremendous
variability—however, the worst case seems to be about a minute and a half.

The proofs in each module are summarized in the table below, which
reproduces part of the output from the EHDM “proveall” command.

4.3. Statistics and Observations

Module absolutes:
Module algorithm:
Module arithmetics:
Module clockprops:
Module clocks:

Module functionprops:

Module juggle:
Module lemmal:
Module lemma2:
Module lemma3:
Module lemmad:
Module lemmab:
Module lemma6:
Module main:
Module natinduction:
Module natprops:
Module sigmaprops:
Module summations:
Module sums:
Module time:

12 proofs
5 proofs
25 proofs
12 proofs
2 proofs
no proofs
14 proofs
1 proof
5 proofs
1 proof
6 proofs
3 proofs
4 proofs
3 proofs
5 proofs
7 proofs
28 proofs
9 proofs
19 proofs
6 proofs

Table 4.1: Proof Summaries for EHDM Modules

61

62 Chapter 4. Formal Specification and Verification in EHDM

Of course, the raw statistics of CPU time and numbers of proofs and
lines of specification text are among the most superficial measures one can
provide for a formal specification and verification. More interesting are the
questions of how much human effort was required, whether the benefits of the
exercise could have been obtained more cheaply by other techniques, and
whether the particular specification and verification techniques and tools
used were a help or a hindrance to the effort.

Unfortunately, we did not accurately record the human effort expended
on this exercise, so the following account relies on memory. Our first attempt
to perform the verification occupied a week, with both of us devoting about
three-quarters of our time to the effort. One of us broke the published proof
of Lamport and Melliar-Smith down into elementary steps, while the other
encoded these in EHDM and persuaded the theorem prover to accept the
proofs. At this point we had caught the typographical errors in Lemmas 2
and 4, and had proofs of Lemmas 1, 3, 4, and 5—but Lemma 2 was essentially
taken as an axiom. Approximate equality and inequalities were used freely
at this stage, although several of the formulas needed were mentally flagged
as suspicious.

It was when we attempted to establish Lemma 2 as a consequence of a
more primitive axiomatization of the properties of good clocks that we first
came to suspect that the published proof was flawed. Once we had satisfied
ourselves that this was indeed so, we became more critical of other aspects
of the published proof and checked all the formulas (treated as axioms at
this stage) needed to support the use of approximations. This led us to
fully recognize the flawed character of the proofs for Lemma 4 and the main
Theorem.

Until this point we had merely been attempting to mechanize the pub-
lished proof, and had not really internalized that proof, nor tried indepen-
dently to re-create it. As a result of discovering flaws in the published proof,
our interest in the verification exercise increased considerably and we sought
not only to eliminate the use of approximations, but to simplify and system-
atize the proof as well. The elimination of approximations was accomplished
quite easily, and simplification of the proofs of Lemmas 1, 3, 4 and 5 was
achieved by more systematic use of the arithmetic “rearrangement” identi-
ties (e.g., 2 = (u — v) + (v — w) — (u — [w + z]) used in Lemma 1). All this
work was done by hand, and only cast into EHDM and mechanically verified
towards the end.

Our restructuring and better understanding of the proofs reduced the
EHDM proof declarations for Lemmas 3 and 4 to between a half and a third

4.3. Statistics and Observations 63

of their previous lengths (elimination of the unnecessary II from Lemma
3 also contributed to the simplification of its proof). It was during this
stage of the mechanical verification, that we recognized the need for several
variants on Lemma 2, and for modifications to Assumption A2. This stage
of the effort (including the manual reformulation of the proof, as well as its
mechanization) consumed about three man-weeks.

Next we mechanized the proof of the main theorem, developing the mod-
ules lemma6, summations, and main. The formulas in module sums were
developed while doing the proofs in module summations and were used as
axioms at this stage—which consumed about two-man weeks.

Finally, we began to put the whole verification together and to prepare
this document. We developed the module sigmaprops and used it to prove
the previously unproved formulas in module sums. We discovered several mi-
nor flaws in the statements of those formulas while performing their proofs.
As we began to describe and document our specifications and proofs, we
filled in missing fragments (e.g., the module juggle, which took a man-day
to create), and continually revised the modules of the supporting theories
in order to simplify and systematize the axiomatic basis on which the whole
verification depends. This process proceeded in parallel with the preparation
of this report—both activities together consumed about two man-months.

We have described the chronology of this effort in some detail to illustrate
the following points:

e The mechanical verification was interleaved with pencil and paper
mathematics, and each activity stimulated the other. We expand on
this below, but the essential point is that formal specification and
verification assists rather than replaces human thought and scrutiny.

e A substantial portion of the time devoted to the mechanical verifica-
tion was expended on the supporting theories. As formal verification
becomes more widely practiced, we would expect libraries of such the-
ories to become established, so that later efforts can concentrate their
efforts on the problem of real interest.!! If we neglect the effort spent
on the supporting theories, then the time required to perform the me-
chanical verification was of a similar order to that required to prepare
an adequately detailed “journal-level” description and proof for human
consumption (i.e., the first 3 Chapters of this report).

1'ERDM provides linguistic and system support (in the form of module parameterization,
and a mechanism for managing module libraries, respectively) that are explicitly intended
for the support of reusable specifications.

64 Chapter 4. Formal Specification and Verification in EHDM

e “High-level” axioms are almost always wrong! The main benefit of
mechanical verification is the extreme rigor of the scrutiny to which
proofs are subjected. This benefit is subverted if axioms are intro-
duced casually. It was not until we attempted to build our proofs on
the most basic definition of a good clock, and seriously scrutinized
the lemmas required of the approximation operators, that we began
to discover the flaws in the published proof. Similarly, our first-cut
axiomatizations of the summation operators were flawed (typically at
boundary cases). Others who have undertaken formal specification
and verification exercises have privately reported similar experiences.

Our current verification depends on 47 axioms. Of these, 29 (6 in
module time, 6 in clocks and 17 in algorithm) define the concepts,
constraints, and algorithm of direct interest. The other 18 introduce
supporting concepts (e.g., summation) or properties of arithmetic be-
yond those built into the system (i.e., some of the properties of division
and multiplication). We spent a great deal of effort reducing the num-
ber and simplifying the content of these 18 supporting axioms and we
believe that they correspond to conventional interpretations of the con-
cepts concerned. Similarly, we believe that the 29 axioms underlying
our development of the Interactive Convergence Clock Synchroniza-
tion Algorithm are a simple and near-minimal foundation on which to
construct the definition and analysis of this algorithm.

It is always necessary to scrutinize axioms with great care, and we
believe that this can best be accomplished if the axioms are as simple
and as few as feasible. Our experience suggests that it can be very
time-consuming to pare away at the axiomatic foundation of a proof,
but that it is very worthwhile to do so.

It is difficult to answer the question whether the flaws we found in the
published analysis of the Interactive Convergence Clock Synchronization
Algorithm could have been discovered more easily by other methods. Once
the flaws are known, they are easy to describe and their presence in the
published proof is almost painfully obvious. Nonetheless, as far as we know,
these flaws were not discovered previously. The reputation of the journal
in which the paper was published, and of its authors, may have caused
some to assume that the proof “must be right” without further scrutiny,
and may have stilled any doubts in the minds of those who examined the
proof in sufficient detail to become concerned by some of its details. Some
who scrutinized the proof with great care decided that it would be easier to

4.3. Statistics and Observations 65

develop their own analysis than to persuade themselves of the veracity of
the original.1?

The root difficulty, we believe, lies in the fact that the proof in [11],
though neither mathematically deep nor intrinsically interesting, is aston-
ishingly intricate in its details. The analysis of many algorithms, computer
programs, and similar artifacts shares this characteristic—and renders the
standard “mathematical demonstration” (which forms the basis for the con-
sensus model of classical mathematics) unreliable in these contexts.

The only reliable method for conducting such highly intricate analyses
is, we believe, a strictly formal one—one in which the “symbols do the work”
just as they do in arithmetic and other detailed calculations. Formal cal-
culations can introduce their own class of errors, but their formal character
means that they can be checked easily (if tediously) by others. Once the
decision to use a strict formalism has been taken, the additional cost of sub-
Jecting the calculations to meckanical checking is not great—providing the
formal system and notation used by the machine does not differ too much
from that used by the hand and brain.

We found that EHDM served us very well from this perspective. Because
EHDM uses a standard logic (predicate calculus) with all the usual quan-
tifiers and connectives, transliterating from the notation of Lamport and
Melliar-Smith into the specification language of EHDM was straightforward.
Automation of the reverse translation (by the IATRX-printer) enabled us to
do most of our work and thinking using compact and familiar notation and
thereby contributed greatly to our productivity. The higher-order capabili-
ties of EHDM allowed us to define the summation and averaging operators
very straightforwardly and also enabled us to tailor induction schemes ap-
propriately.

The arithmetic decision procedures of EHDM were of immense value in
the formal verification. We doubt that verification environments lacking
such decision procedures could accomplish the work described here without
unreasonable effort. Most of the really tedious theorem proving that we
undertook arose at the boundary of the arithmetic decision procedures (i.e.,
in dealing with division and non-linear multiplication). There is no perfect
solution to these difficulties (the theories concerned are undecidable), but a
better integration of decision procedures, incomplete heuristics, and man-
ual guidance is both possible and desirable—and will be pursued in further
developments of EHDM. We found the basic theorem-proving paradigm of

!2Fred Schneider has told us that this was one of the motivations behind [15].

66 Chapter 4. Formal Specification and Verification in EHDM

EHDM straightforward and adequate for its purpose (though others, espe-
cially novices, might not agree). The correspondence between the informa-
tion in an EHDM “prove” declaration and that required for a journal-level
proof description is quite close. Naturally, increased automation of details
(for example, use of term rewriting to mechanize equational theories, and
automatic discovery of substitution instances)!® would be welcome, but we
did not find theorem proving to be a bottleneck. (Discovering the correct
theorems to prove was the bottleneck.)

The module structure supported by the EHDM specification language
and its support environment simplified the task of managing and compre-
hending a formal development that eventually became quite large, and en-
abled us to keep track of undischarged proof obligations. The latter service
was particularly valuable, due to the way in which our formal specification
and verification were developed. Our approach was very much top-down: we
introduced lemmas whenever it was convenient to do so, and worried about
proving them later. We may have carried this approach a little too far in
the early stages (i.e., we did not examine the content of our lemmas with
sufficient care), but we did not know at that period whether our attempt to
mechanically verify the algorithm would be successfull4 and we were anxious
to explore the more obviously difficult parts first.

Overall, we did not find the formal specification and mechanical ver-
ification of the Interactive Convergence Clock Synchronization Algorithm
particularly demanding. The main difficulty was the sheer intricacy of the
argument, and we found the discipline of formal specification and verification
to be a help, rather than a hindrance, in finally mastering this complexity.

We found that EHDM served us reasonably well; we do not know whether
other specification and verification environments would have fared as well
or better. Understanding the practical benefits and limitations of different
approaches to formal specification and mechanical theorem proving is nec-
essary for sensible further development of verification environments. Con-
sequently, we invite the developers and users of other verification systems
to repeat the experiment described here. We suggest that the Interactive
Convergence Clock Synchronization Algorithm is a paradigmatic example
of a problem where formal verification can show its value and a verification
system can demonstrate its capabilities: it is a “real” rather than an artifi-

13The instantiator of EHDM accomplishes both of these tasks very effectively for proofs
in pure predicate calculus, but is much less useful when arithmetic is employed extensively.

14The algorithm (or rather an implementation of it) had been asserted to be *probably
beyond the ability of any current mechanical verifier” |2, page 9].

4.3. Statistics and Observations 67

cial problem, its verification is large enough to be challenging without being
overwhelming, it requires a couple of fairly interesting supporting theories,
and its proofs are quite intricate and varied.

Chapter 5

Conclusions

“The virtue of a logical proof i3 not that it compels belief but that
it suggests doubts.” [10; page 48]

Verification does not prove programs “correct”; it merely establishes
consistency between one description of a system and another. The extent
to which such consistency can be equated with correctness depends on the
extent to which one of the descriptions accurately states all the properties
required of the system, on the extent to which the other accurately and
completely describes its actual behavior, and on the extent to which the
demonstration of consistency between these two descriptions is performed
without error.

In practice, all three of these limitations on “correctness” pose significant
challenges. The behavior of the actual system will depend on physical pro-
cesses that may not admit completely accurate descriptions, or that may be
subject to random effects, while the properties required of the system may
not be fully understood, let alone fully recorded in its specification. And
demonstration of consistency between the two descriptions of the system
will be subject to the errors attendant upon any human enterprise. For-
mal specification and verification attempts to control and delimit some of
the difficulties associated with verification; the use of formal specifications
can at least provide precise and unambiguous descriptions of the intended
behavior of the system—the questions remain whether these descriptions
correctly capture what is really required, or what the behavior of the sys-
tem really is, but at least the doubt about what the descriptions themselves
mean is removed. Formal verification attempts to put the demonstration
of consistency between two system descriptions onto a more reliable basis

68

69

by making it a mathematical—indeed, calculational—activity that can be
checked by a mechanical theorem prover. Of course, the validity of this
approach depends on the extent to which the semantics of the specification
language are correctly implemented by its support environment, and on the
correctness of the mechanical theorem prover. These represent significant
challenges, but they are at least more sharply posed than the problems with
which we began.

Formal verification is no more than a formalization of one of the com-
ponents in the widely practiced software quality assurance process called
Verification and Validation (V&V). Validation (testing), the other compo-
nent to this process, is not made redundant or unnecessary by formalizing
the verification component. Indeed, formal verification can help clarify the
assumptions that should be validated by explicit testing.

The opening paragraphs of the introductory documnent to EHDM [1] make
our own attitude clear:

“Writing formal specifications and performing verifications that
really mean something is a serious engineering endeavor. Formal
specification and verification are often recommended for systems
that perform functions critical to human safety or national se-
curity, but it must be understood that formal analysis alone
cannot provide assurance that a system is fit for such a critical
function. Certifying a system as “safe” or “secure” is a respon-
sibility that calls for the highest technical experience, skill, and
Judgment—and the consideration of multiple forms of evidence.
Other important forms of analysis and evidence that should be
considered for critical systems are systematic testing, quantita-
tive reliability measurement, software safety analysis, and risk
assessment. Also, it should be understood that the purpose of
formal verification is not to provide unequivocal evidence that
some aspects of a system design and implementation are “cor-
rect,” but to help you the user convince yourself of that fact; the
verification system does not act as an oracle, but as an impla-
cable skeptic that insists on you explaining and justifying every
step of your reasoning—thereby helping you to reach a deeper
and more complete understanding of your system.”

The opponents to formal verification [7, 9] ignore caveats such as those
expressed above (which are similar to those expressed by all serious pro-
ponents of formal verification) and perform a straw man attack in which

70 Chapter 5. Conclusions

verification is set up as an unequivocal demonstration of correctness, and in
which intelligent human participation is minimized in favor of an omniscient
mechanical verifier. For example, De Millo, Lipton and Perlis [7] claim that:

“The scenario envisaged by the proponents of verification goes
something like this: the programmer inserts his 300-line in-
put/output package into the verifier. Several hours later, he
returns. There is his 20,000-line verification and the message
‘VERIFIED’.”

This is parody. In a paper published several years earlier [19], von Henke
and Luckham indicated the true nature of the scenario envisioned by the
proponents of verification when they wrote:

“The goal of practical usefulness does not imply that the verifi-
cation of a program must be made independent of creative effort
on the part of the programmer ...such a requirement is utterly
unrealistic.”

The thrust of De Millo, Lipton and Perlis’ argument is that formal veri-
fication moves responsibility away from the “social process” that involves
human scrutiny, towards a mechanical process with little human participa-
tion. In reality, a verification system assists the human user to develop a
convincing argument for the correctness of his program by acting as an im-
placably skeptical colleague who demands that all assumptions be stated and
all claims justified. The requirement to explicate and formalize what would
otherwise be unexamined assumptions is especially valuable. Shankar [16],
for example, observes:

“The utility of proof-checkers is in clarifying proofs rather than in
validating assertions. The commonly held view of proof-checkers
is that they do more of the latter than the former. In fact, very
little of the time spent with a proof-checker is actually spent
proving theorems. Much of it goes into finding counterexam-
ples, correcting mistakes, and refining arguments, definitions, or
statements of theorems. A useful automatic proof-checker plays
the role of a devil’s advocate for this purpose.”

This perspective on mechanical theorem proving is very similar to that de-
veloped by Lakatos [10] for the role of proof (not just mechanical theorem
proving) in mathematics. Crudely, this view is that successful completion is

71

among the least interesting and useful outcomes of a proof attempt; the real
benefit comes from failed proof attempts, since these challenge us to revise
our hypotheses, sharpen our statements, and achieve a deeper understanding
of our problem.

Our own experience with the verification of the Interactive Convergence
Clock Synchronization Algorithm supports this view. Most of our time was
spent in trying to prove theorems and lemmas that turned out to be false,
in coming to understand why they were false, and in revising their state-
ments, or those of supporting lemmas and assumptions. The difficulties we
encountered were consequences of genuine technical flaws in the previously
published analysis of the Algorithm [11], and we consider the main benefit
of this exercise to be the identification and correction of those flaws. The
corrections led us to eliminate the use of approximations, thereby allowing
precise statements of the constraints on the values of the parameters to the
Algorithm, and led us to modify one of the assumptions (A2) underlying
the Algorithm, thereby changing its external specification slightly. Our cor-
rections to the statements and proofs of some of the lemmas led us to a
more uniform method for doing those proofs. When reflected back into a
traditional mathematical presentation (given in Chapter 2), we consider the
result to be an analysis that is not only more precise, but simpler and easier
to follow than the original.

Thus, we believe that a significant benefit from our formal verification is
an improved snformal argument for the correctness of the Interactive Con-
vergence Clock Synchronization Algorithm. We hope that anyone contem-
plating using the Algorithm will study our presentation and will convince
themselves of the correctness of the Algorithm and of the appropriateness of
the assumptions (and of the ability of their implementation to satisfy those
assumptions).

Our formal verification does not usurp the “social process” in which De
Millo, Lipton and Perlis place their faith, but should serve to shift its focus
from details to fundamentals. We note that the “social process” apparently
failed to discover the flaws that we have noted in the main theorem concern-
ing the Interactive Convergence Clock Synchronization Algorithm, and in
four of its five lemmas. This is not surprising: the standards of rigor and for-
mality in the normal “mathematical demonstration” are simply inadequate
to the intricacy and detail required for the analysis of many algorithms and
programs. Mechanically checked verification provides valuable supplemen-
tary scrutiny and evidence in these cases.

72 Chapter 5. Conclusions

The extent to which our verification provides a formal guarantee of the
correctness of the Interactive Convergence Clock Synchronization Algorithm
is compromised by the fact that the representation of the problem is some-
what abstracted from reality. The aspect of the representation of the clock
synchronization problem that causes us most concern is the basic definition
of a clock. Real clocks increment in discrete “ticks” whose magnitude may
be quite large compared with some of the other parameters in the system.
Using the rationals as the interpretation of clock time is therefore unreal-
istic, as is the requirement that a good clock should be a strict monotonic
function. Schneider [15] presents a model which treats these aspects more
realistically; formalizing this approach provides an interesting challenge for
the future.

A further challenge will be to formalize and verify an implementation of
the Interactive Convergence Clock Synchronization Algorithm—so far, we
have simply verified properties of the algorithm itself. Our current work is
addressing these challenges; we expect to report our results in early 1990.

Bibliography

1]

(2]

3]

(4]

[5]

[6]

(7l

[8]

Introduction to EHDM. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA 94025, September 28, 1988.

NASA Conference Publication 2377. Peer Review of a Formal Verifi-
cation/Design Proof Methodology, July 1983.

Peter B. Andrews. An Introduction to Logic and T ype Theory: To Truth
through Proof. Academic press, 1986..

Ricky W. Butler. A Survey of Provably Correct Fault-Tolerant Clock
Synchronization Technigues. Technical Report TM-100553, NASA Lan-
gley Research Center, February 1988.

Ricky W. Butler, Daniel L. Palumbo, and Sally C. Johnson. Appli-
cation of a clock synchronization validation methodology to the SIFT
computer system. In Digest of Papers, FTCS 15, pages 194-199, IEEE
Computer Society, Ann Arbor, MI., June 1985.

Flaviu Cristian. Probabilistic Clock Synchronization. Technical Re-
port RJ 6432, IBM Almaden Research Center, San Jose, CA., Septem-
ber 1988.

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. Communications of
the ACM, 22(5):271-280, May 1979.

D. Dolev, J.Y. Halpern, and H.R. Strong. On the possibility and impos-
sibility of achieving clock synchronization. In Proceedings of 16th An-
nual ACM Symposium on Theory of Computing, pages 504-511, Wash-
ington, D.C., April 1984.

73

74 Bibliography

[9] James H. Fetzer. Program verification: the very idea. Communications
of the ACM, 31(9):1048-1063, September 1988.

[10] Imre Lakatos. Proofs and Refutations. Cambridge University Press,
Cambridge, England, 1976.

[11) L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the pres-
ence of faults. Journal of the ACM, 32(1):52-78, January 1985.

[12] Leslie Lamport. Synchronizing Time Servers. Technical Report 18,
DEC Systems Research Center, Palo Alto, CA., June 1987.

[13] Zohar Manna and Richard Waldinger. The Logical Basis for Computer
Programming. Volume 1, Addison-Wesley, 1985.

[14] Zohar Manna and Richard Waldinger. The Logical Basis for Computer
Programming. Volume 2, Addison-Wesley, 1988.

[15] Fred B. Schneider. Understanding Protocols for Byzantine Clock Syn-
chronization. Technical Report 87-859, Department of Computer Sci-
ence, Cornell University, Ithaca, NY, August 1987.

[16] N.Shankar. A mechanical proof of the Church-Rosser theorem. Journal
of the ACM, 35(3):475-522, July 1988.

[17] Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1-12, January 1984.

[18] F.W.von Henke, J.S. Crow, R. Lee, J.M. Rushby, and R.A. Whitehurst.
The EHDM verification environment: an overview. In Proceedings 11th
National Computer Security Conference, pages 147-155, NBS/NCSC,
Baltimore, MD., October 1988.

[19] F.W. von Henke and D.C. Luckham. A methodology for verifying pro-
grams. In Proceedings, International Conference on Reliable Software,
pages 156-164, IEEE Computer Society, Los Angeles, CA., April 1975.

Appendix A

Cross-Reference Listing

This Appendix provides two cross-reference tables to assist in reading and
navigating the EHDM specifications that follow. The first provides the trans-
lations used between EHDM identifiers and the symbols used in the tradi-
tional mathematical presentation and in the IATpX-printed version of the
specifications. The second table provides a cross-reference listing to the
identifiers declared in the EHDM specification.

75

Appendix A. Cross-Reference Listing

Identifier Translation
abs [1]
adjusted AS’;z) (*3)
clock c.1(*2)
Corr C,E;z)
D2bar A .(;;?22
Delta A

delta 6

delta0 éo

Deltal Al
Delta2 A,(,;?z
eps €

Gamma r

half 1’21
in_R_interval | 1 € R(*2?)
in_S_interval | x1 € S(*2)
mean D3 (x3)
mult *1 X %2
PHI P

PI Il

rho p

rt i(x3)
Sigma b)

sigma o(*1,%2,%3)
sum 21(x3)
TO To

Ti T

tl t1

T2 T,

t2 ty

TN Tn

T sup T(1)
T_ZERO T°

Table A.1: IATpX-Printer Translations for EHDM Identifiers

Identifier Type of Declaration | Module where Declared
A0 axiom algorithm
Al axiom clocks

A2 axiom algorithm
A2_aux axiom algorithm
abs function absolutes
absolutes module absolutes
abs_ax axiom absolutes
abs_ax0 lemma absolutes
abs_ax1 lemma absolutes
abs_ax2 lemma absolutes
abs_ax2b lemma absolutes
abs_ax2c lemma absolutes
abs_ax3 lemma absolutes
abs_ax4 lemma absolutes
abs_ax5b lemma absolutes
abs_ax6 lemma absolutes
abs_ax7 lemma absolutes
abs_ax8 lemma absolutes
abs_div axiom absolutes
abs_div2 lemma arithmetics
abs_div2_proof | prove arithmetics
abs_mean lemma sums
abs_mean_proof | prove sums
abs_proof0 prove absolutes
abs_proofl prove absolutes
abs_proof2 prove absolutes
abs_proof2b prove absolutes
abs_proof2c prove absolutes
abs_proof3 prove absolutes
abs_proof4 prove absolutes
abs_proofb prove absolutes
abs_proof6 prove absolutes
abs_proof7 prove absolutes
abs_proof8 prove absolutes
abs_sum lemma sums
abs_sum_proof | prove sums
abs_times axiom absolutes

Table A.2: Cross-Reference to EHDM Identifiers

78 Appendix A. Cross-Reference Listing
Identifier Type of Declaration | Module where Declared
adjusted function clocks
adj_always_pos lemma clockprops
adj_pos_proof prove clockprops
Algl axiom algorithm
Alg2 axiom algorithm
Alg3 axiom algorithm
algorithm module algorithm
alt_sb_step_proof prove sigmaprops
alt_sigma_bound_step | lemma sigmaprops
arithmetics module arithmetics
basis lemma clockprops
basis lemma main
basis_proof prove clockprops
basis_proof prove main
bounded function sigmaprops
bounded.ax axiom sigmaprops
bounded _lemma lemma sigmaprops
bounded_proof prove sigmaprops
bounds lemma clockprops
bounds_proof prove clockprops
bound_faulty lemma summations
bound faulty _proof prove summations
bound_nonfaulty lemma summations
bound_nonfaulty _proof | prove summations
CO.a axiom algorithm
C0b axiom algorithm
COc axiom algorithm
C1 axiom time
C2 axiom algorithm
C2and3 lemma algorithm
C2and3_proof prove algorithm
C3 axiom algorithm
C4 axiom algorithm
Cs5 axiom algorithm
Cé axiom algorithm

Table A.3: Cross-Reference to EHDM Identifiers (Continued)

79

Identifier Type of Declaration | Module where Declared
cancellation lemma arithmetics
cancellation_mult lemma arithmetics
cancellation_mult_proof | prove arithmetics
cancellation_proof prove arithmetics
cancel_mult lemma juggle
cancel_mult_proof prove juggle
clock function clocks
clockdef axiom clocks
clockprops module clockprops
clocks module clocks
clocktime type time
clock_proof prove algorithm
clock_prop lemma algorithm
Corr function clocks
Cross reference of
culmination lemma summations
culm_proof prove sumimations
D2bar function algorithm
D2bar_prop lemma algorithm
D2bar_prop_proof prove algorithm
Delta const algorithm
delta const algorithm
delta0 const algorithm
Deltal function algorithm
Delta2 function algorithm
diff function natprops
diff1 lemma natprops
'diff1_proof prove natprops
diff_ax axiom natprops
diff_diff lemma natprops
diff_diff_proof prove natprops
diff ineq lemma natprops
diff ineq_proof prove natprops
diff_plus lemma natprops
diff_plus_proof prove natprops
diff zero lemma natprops
diff_zero_proof prove natprops

Table A.4: Cross-Reference to EHDM Identifiers (Continued)

80 Appendix A. Cross-Reference Listing
Identifier Type of Declaration | Module where Declared
diminish lemma clocks
diminish_proof prove clocks
distrib4 _div lemma juggle
distrib4_div_proof | prove juggle
distrib6 lemma Jjuggle
distrib6_div lemma juggle
distrib6_div_proof | prove juggle
distrib6_mult lemma Juggle
distrib6_mult_proof | prove Juggle
distrib6_proof prove juggle
div_distr lemma arithmetics
div_distr_proof prove arithmetics
div_mon lemma arithmetics
div_mon2 lemma arithmetics
div_.mon2_proof prove arithmetics
div_mon._proof prove arithmetics
div_mult lemma arithmetics
div_mult2 lemma arithmetics
div_mult2_proof prove arithmetics
div_mult_proof prove arithmetics
div_prod lemma arithmetics
div_prod2 lemma arithmetics
div_prod2_proof prove arithmetics
div_prod_proof prove arithmetics
div_times lemma arithmetics
div_times_proof prove arithmetics
eps const algorithm
extensionality axiom functionprops
final prove juggle
functionprops module functionprops
gc_ax axiom clocks
gc_proof prove clockprops
ge_prop lemma clockprops
goodclock function clocks

Table A.5: Cross-Reference to EHDM Identifiers (Continued)

Identifier Type of Declaration | Module where Declared
half function arithmetics
half2 lemma arithmetics
half2_proof prove arithmetics
half3 lemma arithmetics
half3_proof prove arithmetics
half_ax axiom arithmetics
i2R lemma clockprops
i2R _proof prove clockprops
Identifier Type Module
induction lemma natinduction
inductionl lemma natinduction
inductionl_proof | prove natinduction
induction2 axiom natinduction
induction_m axiom natinduction
induction_proof | prove natinduction
inductive step lemma clockprops
ind_proof prove clockprops
ind_proof prove main

ind _step lemma main

inRS lemma time
inRS_proof prove time

in_R _interval function time
in_S_interval function time
in_S_lemma lemma time
in_S_proof prove time

juggle module Jjuggle

11 lemma summations
11 _proof prove summations
12 lemma summations
12_proof prove summations
13 lemma summations
13_proof prove summations
14 lemma summations
14_proof prove summations
15 lemma summations
15_proof prove summations

Table A.6: Cross-Reference to EHDM Identifiers (Continued)

81

82 Appendix A. Cross-Reference Listing
Identifier Type of Declaration | Module where Declared
lemmal module lemmal
lemmaldef lemma lemmal
lemmal _proof prove lemmal
lemma2 module lemma2
lemmaZ2a lemma lemma2
lemma2a_proof prove lemma2
lemma2b lemma lemma2
lemma2b_proof prove lemma2
lemmaZ2c lemma lemma2
lemma2c_proof prove lemma2
lemma2d lemma lemma2
lemmaZ2def lemma lemma2
lemma2d_proof prove lemma?2
lemmaZ2x lemma lemma4
lemma2x_proof prove lemma4
lemma2_proof prove lemma2
lemma3 module lemma3
lemma3def lemma lemma3
lemma3_proof prove lemma3
lemma4 module lemma4
lemmaddef lemma lemma4
lemma4_proof prove lemma4
lemmab module lemmab
lemmab5def lemma lemmab
lemmabproof prove lemmab
lemma6 module lemma6
lemma6def lemma lemma6
lemma6_proof prove lemma6
lower bound lemma clockprops
lower _bound2 lemma clockprops
lower_bound2_proof | prove clockprops
lower _bound_proof | prove clockprops
m const algorithm
main module main

Table A.7: Cross-Reference to EHDM Identifiers (Continued)

83

Identifier Type of Declaration | Module where Declared
mean function sums
mean_ax axiom sums
mean_bound lemma sums
mean_bound_proof prove sums

mean _const lemma sums
mean_const_proof prove sums

mean _diff lemma sums

mean _diff_proof prove sums
mean_lemma lemma sums
mean_lemma_proof prove sums
mean.mult lemma sums
mean_mult_proof prove sums
mean_sum lemma sums
mean_sum_proof prove sums
mod_induction lemma natinduction
mod_inductionl lemma natinduction
mod_inductionl_proof | prove natinduction
mod.induction_m lemma natinduction
mod_induction_proof | prove natinduction
mod._m._proof prove natinduction
mod _sigma_mult lemma sigmaprops
mod sigma_mult_proof | prove sigmaprops
monoproof prove clocks
monotonicity theorem clocks

mult function arithmetics
mult0 lemma arithmetics
multO_proof prove arithmetics
multl axiom arithmetics
mult2 lemma arithmetics
mult2_proof prove arithmetics
mult3 lemma arithmetics
mult3_proof prove arithmetics
mult4 lemma arithmetics
mult4_proof prove arithmetics

Table A.8: Cross-Reference to EHDM Identifiers (Continued)

84 Appendix A. Cross-Reference Listing
Identifier Type of Declaration | Module where Declared
mult_ax axiom arithmetics
mult_div lemma arithmetics
mult_div_proof prove arithmetics
mult_ineql lemma juggle
mult_ineql_proof prove juggle
mult_ineq?2 lemma Jjuggle
mult_ineq2_proof prove juggle
mult_mon axiom arithmetics
mult_mon2 lemma arithmetics
mult_mon2 _proof prove arithmetics
n const algorithm
natinduction module natinduction
natpos axiom natprops
natprops module natprops
nonfaulty function clocks
nonfx lemma clockprops
nonfx_proof prove clockprops
period type time
posR axiom time
posS axiom time
pos.abs lemma absolutes
pos.abs_proof prove absolutes
pred function natprops
pred_ax axiom natprops
pred_diff lemma natprops
pred_diff_proof prove natprops
pred lemma lemma natprops
pred lemma_proof | prove natprops
proc type clocks
quotient_ax axiom arithmetics
quotient_ax1 axiom arithmetics
quotient_ax2 axiom arithmetics
quotient_mult lemma arithmetics
quotient_mult_proof | prove arithmetics

Table A.9: Cross-Reference to EHDM Identifiers (Continued)

85

Identifier Type of Declaration | Module where Declared
R const time

Rdef axiom time
realtime type time
rearrange lemma arithmetics
rearrangel lemma arithmetics
rearrangel lemma lemma4
rearrangel lemma lemmab
rearrangel _proof prove arithmetics
rearrangel _proof prove lemma4
rearrangel_proof prove lemmab
rearrange2 lemma arithmetics
rearrange2 lemma lemmad
rearrange2 lemma lemma5b
rearrange2_proof prove arithmetics
rearrange2_proof prove lemma4
rearrange2_proof prove lemmab
rearrange3 lemma lemma4
rearrange3_proof prove lemma4
rearrange_alt lemma arithmetics
rearrange_alt_proof | prove arithmetics
rearrange_delta lemma Jjuggle
rearrange_proof prove arithmetics
rearrange.sub lemma sums
rearrange_sub_proof | prove sums
rearrange_sum lemma sums
rearrange_sum._proof | prove sums
reciprocal lemma juggle
reciprocal_proof prove juggle
revsigma function sigmaprops
revsigma_ax axiom sigmaprops
rho const clocks
rho_pos axiom clocks
rho_small axiom clocks

rt function clocks

S const time

Table A.10: Cross-Reference to EHDM Identifiers (Continued)

86

Appendix A. Cross-Reference Listing
Identifier Type of Declaration | Module where Declared
S1A function algorithm
S1Adef axiom algorithm
S1A lemma lemma clockprops
S1A lemma _proof | prove clockprops
s1b_proof prove sigmaprops
S1C function algorithm
S1Cdef axiom algorithm
S1C.lemma lemma algorithm
S1C_lemma._proof | prove algorithm
sls_proof prove sigmaprops
S2 function algorithm
S2_ax axiom algorithm
S2_pqr lemma summations
S2_pqr._proof prove summations
sa_basis_proof prove sigmaprops
sa_proof prove sigmaprops
sa.step._proof prove sigmaprops
sb lemmma sigmaprops
sb_basis_proof prove sigmaprops
sb_proof prove sigmaprops
sb_step_proof prove sigmaprops
sc_basis_proof prove sigmaprops
sc_proof prove sigmaprops
sc.step_proof prove sigmaprops
Sdef axiom time
Sigma const algorithm
sigma function sigmaprops
sigmal lemma sigmaprops
sigmal basis lemma sigmaprops
sigmal_proof prove sigmaprops
sigmal step lemma sigmaprops
sigmaprops module sigmaprops
sigma_abs lemma sigmaprops
sigma_abs basis lemma sigmaprops
sigma_abs_step lemma sigmaprops
sigma_ax axiom sigmaprops

Table A.11: Cross-Reference to EHDM Identifiers (Continued)

87

Identifier Type of Declaration | Module where Declared
sigma_bound lemma sigmaprops
sigma_bound2 lemma sums
sigma_bound2_proof | prove sums
sigma_bound_basis | lemma sigmaprops
sigma_bound_proof | prove sigmaprops
sigma_bound_step lemma sigmaprops
sigma_const lemma sigmaprops
sigma._const_basis lemma sigmaprops
sigma_const_step lemma sigmaprops
sigma_mult lemma sigmaprops
sigma_mult_basis lemma sigmaprops
sigma_mult _step lemma sigmaprops
sigma _rev lemma sigmaprops
sigma.rev _basis lemma sigmaprops
sigma rev_proof prove sigmaprops
sigma _rev_step lemma sigmaprops
sigma_sum lemma sigmaprops
sigma_sum_basis lemma sigmaprops
sigma _sum_ step lemma sigmaprops
SinR lemma time

SinR _proof prove time

skew function algorithm
small_shift lemma clockprops
small shift_proof prove clockprops
sm_basis_proof prove sigmaprops
sm_proof prove sigmaprops
sm_step_proof prove sigmaprops
split_basis_proof prove sigmaprops
split_mean lemma sums
split_mean_proof prove sums
split_proof prove sigmaprops
split_sigma lemma sigmaprops
split_sigma basis lemma sigmaprops
split_sigma_step lemma sigmaprops
split_step_proof prove sigmaprops
split_sum lemma sums
split_sum_proof prove sums

Table A.12: Cross-Reference to EHDM Identifiers (Continued)

88 Appendix A. Cross-Reference Listing

Identifier Type of Declaration | Module where Declared
srb_proof prove sigmaprops
srp_proof prove sigmaprops
ss_basis_proof prove sigmaprops
ss_proof prove sigmaprops
ss_step_proof prove sigmaprops
stepl lemma juggle
stepl_proof prove juggle
step2 lemma juggle
step2_proof prove juggle
step3 lemma juggle
step3_proof prove juggle
stepd lemma juggle
step4_proof prove juggle
step5 lemma Juggle
step5_proof prove juggle
subl_proof prove lemma6
sub2_proof prove lemma6
sublemmal lemma lemma4
sublemmal lemma lemmat
sublemmal_proof prove lemma4
sublemma2 lemma lemma6
sublemma_A lemma lemma6
sub_A _proof prove lemma6
sum function sums
summations module summations
sums module sums
sum.ax axiom sums
sum_bound lemma sums
sum_bound0 lemma sums
sum_boundO_proof prove sums
sum_bound1l lemma sums
sum_bound1_proof prove sums
sum_bound2 lemma sums
sum_bound2_proof prove sums
sum_bound._mod lemma sums
sum_bound_mod_proof | prove sums
sum_bound_proof prove sums

Table A.13: Cross-Reference to EHDM Identifiers (Continued)

Identifier Type of Declaration | Module where Declared
sum_mult lemma sums
sum_mult_proof prove sums
Theorem_1 theorem algorithm
Theorem_1_proof | prove main
Theorem_2 theorem algorithm
Theorem_2_proof prove algorithm
time module time
times_half lemma arithmetics
times_half_proof prove arithmetics
Tiin R lemma time

Tiin S lemma time
Ti.in_S_proof prove time
Ti_proof prove time

T next lemma time

T _next_proof prove time

T _sup function time

T sup.ax axiom time
T_ZERO const time
upper_bound lemma clockprops
upper_bound _proof | prove clockprops
zero_correction axiom clocks

89

Table A.14: Cross-Reference to EHDM Identifiers (concluded)

Appendix B

[dTpX-printed Specification
Listings

The following specification listings were formatted and converted to math-
ematical notation automatically using the EHDM IATpX-printer. The raw
EHDM text is in Appendix D. All the proofs in these listings have been
checked by the EHDM theorem prover using the EHDM variable settings
prmode = checking and prlambdafree = everywhere.

90

Module Page
Absolutes 92
Algorithm 120
Arithmetics 94
Clockprops 123
Clocks 118
Functionprops | 100
Juggle 139
Lemmal 126
Lemma2 127
Lemma3 129
Lemma4 130
Lemmab 132
Lemma6 133
Main 144
Natinduction | 101
Natprops 98
Sigmaprops 108
Summations 135
Sums 103
Time 116

Table B.1: Page References to EHDM Specification Modules

91

92 Appendix B. IATpX-printed Specification Listings

absolutes: Module
Exporting | * 1|
Theory

a,b,w,z,y,z: VAR number
| * 1|: function[number — number]

abs_ax: Axiom |a| = if a <0 then —a else a end if
abs_times: Axiom |a * b| = |a| * |b]|

abs_div: Axiom b# 0> |a/b| = |a|/|}]

abs_ax0: Lemma 0 = |0]

abs_ax1: Lemma 0 < |z|

abs_ax2: Lemma |z + y| < |z]| + |y|

abs_ax2b: Lemma |z +y + 2| < |z] + |y| + |2

abs_ax2c: Lemma |w+z+y+ 2| < |w|+ |z| + |y| + |2|
abs_ax3: Lemma | — z| = |z|

abs_ax4: Lemma |z — y| = |y — 2|

abs ax5: Lemma 0< zAz<2A0<yAy<zDlz-y|<z
abs.ax6: Lemma |z]| <yD -y<zAz<y

abs_ax7: Lemma |z| = ||z||

abs_ax8: Lemma |z — y| < |z| + |y|

pos_abs: Lemma 0<zDlz|=2z

Proof

abs_proof0: Prove abs_ax0 from abs_ax {a « 0}
abs_proofl: Prove abs_ax1 from abs_ax {a « z}

abs_proof2: Prove abs_ax2 from
abs_ax {a « z + y}, abs_ax {a « z}, abs_ax {a « y}

abs_proof2b: Prove abs_ax2b from
abs_ax2 {y « y+ 2z}, abs.ax2 {x — y, y « 2}

Absolutes 93

abs_proof2c: Prove abs_ax2c from
abs.ax2 {x «— w,y <« z+ y + z}, abs_ax2b

abs_proof3: Prove abs_ax3 from abs_ax {a < z}, abs_ax {a « —z}

abs_proof4: Prove abs_ax4 from
abs_ax {a « z — y}, abs_ax {a « y — 2}

abs_proof5: Prove abs_ax5 from abs.ax {a «— z — y}
abs_proof6: Prove abs_ax6 from abs.ax {a « z}
abs_proof7: Prove abs_ax7 from abs_ax1, abs_ax {a + |z|}

abs_proof8: Prove abs_ax8 from
abs_ax {a « z — y}, abs_ax {a « z}, abs_ax {a « y}

pos.abs_proof: Prove pos_abs from abs_ax {a «— z}

End absolutes

94 Appendix B. IATgX-printed Specification Listings

arithmetics: Module

Using absolutes

Exporting 1 x x2,% with absolutes
Theory

a,b,c,u,v,w,z,y,2: VAR number
*1 X *2: function[number, number — number]
%' function[number — number]

(* ")

quotient_ax: Axiom y# 0> z/y =z *(1/y)

quotient_axl: Axiom z #0> z/z =1
quotient.ax2: Axiomz2>0>1/2>0

* *)
div_times: Lemma y # 0D (z/y) *z = (z * 2)/y
div distr: Lemma z #0 D z/z+ y/z = (z +y)/z

abs.div2: Lemma y > 0 D |z/y| = |z|/y
div.mon: Lemma z < yAz>0D>'z/z < y/z
divamon2: Lemma z < yAz>0Dz/z < y/z
div.prod: Lemma y >0Aa<z*yDdaly<z
div_prod2: Lemma y > 0Aa<z*yDa/y<z
cancellation: Lemma y#0> (y*z)/y=1=z

(* *)

mult_.ax: AxiomzXy=z*y

multl: Axiomz >0Ay>0Dzxy>0

mult mon: Axiomz < yAz>0Dzxz<yxz
(* *)

mult_monZ:Lemma:z:Sy/\z>OD:cxz5yxz

Arithmetics 95

cancellation. mult: Lemma y#0>z X y/y==
mult0: Lemma y=0D>zxy=0

mult div: Lemma y#0> z/yxy==x

(* *)
half ax: Axiom § = z/2

(* ¥)

times_half: Lemma 2+ 7 ==z

half2: Lemma + ==z

half3: Lemma 2+ 3 xy=z xy

mult2: Lemma 2% (z xy) = (2* 1) X y
mult3: Lemma zXxy+z2=zxy+zXx 2z
mult4: Lemma 0<zAy<zDzxy<zXxz

rearrange: Lemma
lz -yl <lz-(u+o)l+ly—(w+2)+|utv—(w+t2)

rearrange_alt: Lemma |z — y| < [z — (v + v)| 4+ |[u — w| + |y — (w + v)|

Proof

div_times_proof: Prove div_times from
quotient_ax, quotient_ax {x «— z * 2}

div_distr_proof: Prove div_distr from
quotient_ax {y « z},
quotient_ax {x «— y,y « 2},
quotient.ax {x — z+y,y « 2}

abs_div2_proof: Prove abs_div2 from
abs.div {a « z, b « y}, pos_abs {x « y}

quotient mult: Lemma y #0D> z/y=z x 1/y

quotient_mult_proof: Prove quotient_mult from
quotient_ax, mult_ax {y < 1/y}

926 Appendix B. IATgX-printed Specification Listings

div_mon_proof: Prove div_mon from
mult_mon {z « 1/z},
quotient mult {y « z},
quotient_mult {x « y, y « 2z},
quotient_ax2

div_mon2_proof: Prove div_.mon2 from div.mon
div.mult: Lemma y > 0Aa<zxyDafy<z

div_mult_proof: Prove div_mult from
div.mon {z < y, x «— a, y < z X y}, cancellation_mult

divomult2: Lemma y > 0Aa<zxyDaf/y<z

div_mult2_proof: Prove div_.mult2 from
div.mon {z < y, x « a, y < z X y}, cancellation_mult

div_prod_proof: Prove div_prod from div_mult, mult_ax
div_prod2_proof: Prove div_prod2 from div_mult2, mult_ax

cancellation_proof: Prove cancellation from
div_times {x « y, z «— z}, quotient_ax1 {x « y}

mult_mon2_proof: Prove mult_ mon2 from mult_mon

cancellation mult_proof: Prove cancellation_mult from
cancellation, mult_ax

multO_proof: Prove mult0 from mult_ax {y « 0}

mult_div_proof: Prove mult_div from
mult_ax {x « z/y}, div_times {z « y}, cancellation

times_half_proof: Prove times_half from
half_ax, div_times {y « 2, z « 2}, cancellation {y « 2}

half2_proof: Prove half2 from times_half
half3_proof: Prove half3 from mult2 {x « £}, times half
mult2_proof: Prove mult2 from mult_ax, mult_ax {x « 2z}

mult3_proof: Prove mult3 from
mult_ax, mult_ax {y « 2z}, mult_ax {y « y+ z}

mult4_proof: Prove mult4 from mult3 {z « z — y}, multl {y « z — y}

Arithmetics

rearrangel: Lemma
z—y=(:z:—(u+v))+(w+z—y)+(u+v—(w+z))

rearrangel_proof: Prove rearrangel

rearrange2: Lemma
[z = (u+ 0)) + (42 9) + (utv - (w+2)
<|z- (u+v)|+|y—(w+z)|+|u+v—(w+z)]

rearrange2_proof: Prove rearrange2 from
abs.ax2b {x —z - (u+v),y —u+tv—(w+2),2 «w+z-y},
abs_ax3 {x — w+ z - y}

rearrange_proof: Prove rearrange from rearrangel, rearrange2
rearrange_alt_proof: Prove rearrange_alt from rearrange {z « v}

End arithmetics

97

98 Appendix B. WWTpX-printed Specification Listings

natprops: Module
Exporting pred, diff
Theory

i,m,n: VAR nat
pred: function|nat — nat]

natpos: Axiomn > 0

pred_ax: Axiom n # 0D pred(n)=n—1

diff: function|nat, nat — nat]

diff ax: Axiom n > m D> diff(n,m)=n-m

pred lemma: Lemma pred(n+1) =n

diff zero: Lemma n > m D diff(n,m) > 0

pred_diff: Lemma n > m D pred(diff(n, m)) = diff(n, m + 1)
diffl: Lemma n > m D diff(n + 1, m + 1) = diff(n, m)

diff_diff: Lemma
n>mAn>iAm2 D diff(diff(n, 1), diff(m, 1)) = diff(n, m)

diff_plus: Lemma n > m D m+diff(n,m) =n

diff ineq: Lemma n > mAn > 1 Am > ¢ D diff(n,) > diff(m, 1)

Proof

pred lemma_proof: Prove pred lemma from pred_ax {n < n + 1}, natpos
diff zero_proof: Prove diff zero from diff_ax

pred_diff_proof: Prove pred_diff from
pred_ax {n « diff(n,m)}, diff_ax, diff .ax {m « m + 1}

diff1 _proof: Prove diffl from
diff ax, diff ax {n — n+1, m « m+1}

diff diff_proof: Prove diff_diff from
diff_ax,
diff ax {m « 1},
diff ax {n «— m, m « 1},
diff ax {n « diff(n,1), m « diff(m, 1)}

Natprops 99

diff_plus_proof: Prove diff_plus from diff_ax

diff ineq_proof: Prove diff ineq from
diff ax {m « ¢}, diff ax {n — m, m « ¢}

End natprops

100 Appendix B. IATgX-printed Specification Listings

functionprops: Module
Theory

F,G: VAR function|nat — number]
z: VAR nat

extensionality: Axiom (Vx: F(z) =G(z))> F =G
End functionprops

Natinduction 101

natinduction: Module
Using natprops
Theory

1,i10,11,12,13, 7, m,n: VAR nat
prop, A, B: VAR function[nat — bool]
prop2: VAR function[nat, nat — bool]

induction.m: Axiom
(prop(m) A (Vi: 4 > m A prop(s) D prop(i + 1)))
D (Vn: n > m D prop(n))

induction2: Axiom
(V i0: prop2(i0,0))
A (Vj: (Vil: prop2(il, 5)) O (Vi2: prop2(i2, 5 + 1)))
D (Vi3, n: prop2(i3, n))

mod.induction.m: Lemma
(Vitg 2 mAA(j+1) D A(j))
A ((A(m) > B(m)) A(Vi:s > mA A(i + 1) A B(s) D B(i + 1)))
D (VYn:n > mA A(n) D B(n))

induction: Lemma
(prop(0) A (Vi: prop(s) D prop(s + 1))) O (V n: prop(n))

mod_induction: Lemma
(Vi: A(J +1) D A(7))
A ((A(0) > B(0)) A(Vi: A(s + 1) A B(s) D B(i + 1)))
D (Vn: A(n) > B(n))

inductionl: Lemma
(prop(1) A (Vi: ¢ > 1 A prop(s) D prop(s + 1)))
D (Vn: n > 1 D prop(n))

102 Appendix B. IXTgX-printed Specification Listings

mod_inductionl: Lemma
(Vi:g 2 1A A(5 +1) 5 A())
A ((A(1) D B(1)) A(Vi:s > 1A A(5 + 1) A B(s) D B(i +1)))
D (Vn:n > 1A A(n) D B(n))

Proof

mod_m_proof: Prove mod_induction.m {i « i@pl, j « ¢} from
induction.m {prop « (Ai— bool : A(t) D B(s))}

induction_proof: Prove induction {i « i@pl} from
induction.m {m « 0}, natpos

mod_induction_proof: Prove mod_induction {i < i@pl, j « j@pl} from
mod_induction m {m « 0}, natpos

inductionl_proof: Prove inductionl {i «— i@p1} from
induction.m {m « 1}

mod.inductionl_proof: Prove mod.inductionl {i « i@pl, j « j@p1}
from mod_induction.m {m « 1}

End natinduction

Sums 103

sums: Module
Using arithmetics, natprops, sigmaprops

Exporting Y13(x3), @33 (x3)
Theory

t,7,k,n,pp,qq,rr: VAR nat
Z,y,2: VAR number
F, G VAR function[nat — number]
(*3) function[nat, nat, function[nat — number] — number]
+1(x3): function|nat, nat, function[nat — number] — number]

sum._ax: Axiom
YiF = if {<j+1 then o(i,diff(5 + 1,i), F) else 0 end if
mean_ax: Axiom)
@} F= if i <jthen T)F/(+1—i) else Oend if
mean_lemma: Lemma
@ F=if i<j
then o(s,diff(s + 1,5), F)/(+ 1 — 1)
else 0
end if

split sum: Lemma ' _
(<j+IAI<k+1Ak<jOTIF=YFF+3i F

split_mean: Lemma
i<]/\i<k+1/\k<]
SO F=(SHF+ Xy F)/(i—i+1)

sum_bound: Lemma
i<j+1A(Vpp:i <ppApp<j>D F(pp) < z)
SLIF<zx(j—i+1)

mean_bound: Lemma _
i <jA(VPp:i<pPAPPSjDO F(pp)<2) D@} F <z
mean.const: Lemma i< joz= @f (X qq— number : 1)

mean_mult: Lemma @f Fxz= ®f (A qg— number : F(qq) * z)

104 Appendix B. IXTgX-printed Specification Listings

mean sum: Lemma

@] F + &] G = @} (A qq— number : F(qq) + G(qq))
mean_diff: Lemma

@! F - @] G = @!(2qq— number : F(qq) ~ G(qq))
abs_mean: Lemma l@" F|< @f(/\qq—* number : |F(qq)|)

rearrange sum: Lemma _
i<j2z+@]F-(y+@]G)
= @; (X qq— number : z + F(qq) — (y + G(qq)))

Proof
mean_lemma _proof: Prove mean lemma from mean_ax, sum_ax
(* *)
split_sum_proof: Prove split_sum from

sum.ax,

sum_ax {j < k},

sum_ax {i — k+ 1},

split_sigma {n « diff(5 + 1,1), m « diff(k + 1,1), 1 « 1},
dif dif {n — j+1,m — k+1},

diff plus {n — k+1, m « ¢},

diff ineq {n <~ j+1, m « k+ 1}

split_mean_proof: Prove split_mean from split_sum, mean_ax
(* *)

sigma_bound2: Lemma
n>0A(Vk:s <kAk<i+pred(n) D F(k) < z)
So(i,n,F)<zxn

sigma_bound2_proof: Prove sigma_ bound2 {k « k@p1} from
sigma bound, mult_ax {y « n}

sum_bound_mod: Lemma
i <jA(Vpp:i <ppApp<jD F(pp) < z)
DYIF<zx(j+1-4)

Sums 105

sum_bound_mod._proof: Prove sum_bound_mod {pp + k@p2} from
sum_ax,
sigma_bound?2 {n « diff(5 + 1,1), 1 « ¢},
pred diff {n — 7+ 1, m « ¢},
diff ax {n — 7+ 1, m « 1},
dif ax {n — j+1, m — s+ 1}

sum_boundl: Lemma
i <jA(VYpp:{ <ppApp < jD F(pp) < z)
32}F<x*(j-—i+1)

sum_bound1_proof: Prove sum_boundl {pp < pp@pl} from
sum_bound_mod, mult_ax {y « j+ 1 -1}

sum_bound0: Lemma
i=3+1A(Ypp:{ <ppApp < jD F(pp) < z)
DE{FSzx(j-f—l—i)

sum_boundO_prodf: Prove sum_bound0 from
sum_.ax {i «— j+1},
dif ax {n — j+1, m « j+1},
sigma.ax {i < 7+ 1, n « 0},
mult0 {y «— 7+ 1-1}

sum_bound2: Lemma
{1 <j+1A(Vpp:¢ <ppApp< 5D F(pp) < z)
DEfFSxx(j+l—i)

sum_bound2_proof: Prove sum_bound2 {pp « pp@p1} from
sum_bound_mod, sum_bound0

sum_bound_proof: Prove sum_bound {pp « pp@pl} from
sum_bound2, mult_ax {y — 7+ 1 —14}

(* %)

mean_bound_proof: Prove mean_bound {pp «— pp@p1} from
sum_bound1, mean_ax, div.prod {a «— Y} F,y «— j-i+1}

106 Appendix B. IATgX-printed Specification Listings

(* ")

mean_const_proof: Prove mean_const from
mean_lemma {F « (A qq— number : z)},
sigma_const {n « diff(+ 1,¢), i « ¢},
diff ax {n « 5+ 1, m « 1},
cancellation {y « j+1 —1}

(* ")

sum_mult: Lemma Ef Fxz= E’Z(A qg— number : F(qq) *)

sum_mult_proof: Prove sum_mult from
sum_ax,
sum_ax {F « (A gq— number : F(qq) * z)},
mod_sigma_mult {i «— ¢, n « diff(y + 1,1)}
mean_mult_proof: Prove mean_mult from
mean _ax,
mean_ax {F « (A qq— number : F(qq) * z)},
sum_mult, ‘
div_times {x — Y/ F@p3,y « j+1—14,z « z}

(* %)

mean_sum_proof: Prove mean_sum from
mean_lemma {F « (Aqq— number : F(qq) + G(qq))},
mean_lemma,
mean lemma {F « G},
sigma_sum {n « diff(j + 1,¢), i « ¢},
div_distr {x « o(s,diff(+ 1,1), F),
y « o(¢,diff(7 + 1,5),G),
z—j+1-1}

(* *)
mean_diff_proof: Prove mean_diff from

mean_mult {F — G, x « -1},
mean_sum {G « (A qq— number : G(qq) * —1)}

(* ")

Sums 107

abs_sum: Lemma | ¥} F| < ¥7(A qq— number : | F(qq)|)

abs_sum_proof: Prove abs_sum from
sum_ax,
sum_ax {F « (A qq— number : |F(qq)|)},
sigma_abs {n « diff(j + 1,1),1 « ¢},
abs_ax0

abs_mean _proof: Prove abs_mean from
mean_ax,
mean_ax {F « (A qq— number : |F(qq)|)},
abs_sum,)
abs div2 {x « X} F,y — j+1—1},
div_mon2 {x « |E: Fl,y « YIF@p2,z + j+1—1i},
abs_ax0

(* *)

rearrange sub: Lemma
i <jDz+ @) F=0]()qq— number : z + F(qq))

rearrange_sub_proof: Prove rearrange_sub from
mean_const, mean_sum {G « (A qq— number : z)}

rearrange_sum_proof: Prove rearrange sum from
rearrange_sub,
rearrange sub {x — y, F — G},
mean_diff {F « (A pp— number : z + FQc(pp)),
G « (A pp— number : y + G@c(pp))}

End sums

108 Appendix B. INTgX-printed Specification Listings

sigmaprops: Module

Using arithmetics, natprops, functionprops, natinduction
Exporting o(x1,%2,3)

Theory

t,11,i2, 7, k,l: VAR nat

F,G: VAR function[nat — number]

n,m,mm,nn,qq: VAR nat

z,y: VAR number

o(x1,%2,%3): function|nat, nat, function|nat — number]| — number]

sigma_ax: Axiom
o({,n,F)= if n=0
then 0
else F(i+ pred(n)) + o(s, pred(n), F)
end if

sigma_const: Lemma o(s,n,(Aqq— number : z)) = n*z

sigma.mult: Lemma
o(¢,n, (A qq— number : z * F(qq))) = z * o(i,n, F)

mod_sigma mult: Lemma

o(s,n,(Aqq— number : F(qq) *z)) = o(i,n, F)*
sigmasum: Lemma

o(t,n, F)+o(i,n,G) = o(i,n, (A qq— number : F(qq) + G(qq)))
split_sigma: Lemma

n>m>Do(i,n, F)=o(i,m, F) + o(i + m,diff(n, m), F)
sigma.abs: Lemma |o(1,n, F)| < o(s,n, (A gqq— number : |F(qq)|))
sigma bound: Lemma

n>0A(Vk:s <kAk<i+pred(n) D F(k) < 2)

So(t,n,F)<nxz

Sigmaprops 109

bounded: function|nat, nat, function[nat — number], number — bool]

bounded_ax: Axiom
n > 0 D (bounded(s,n, F, z)
=(Vk:i <kAk <i+pred(n) D F(k) < z))

revsigma: function[nat, nat, function[nat — number] — number]

revsigma_ax: Axiom
revsigma(i,n,F)= if n=0
then 0
else F(s) + revsigma(s + 1, pred(n), F)
end if

sigma_rev: Lemma o(i,n, F) = revsigma(i, n, F)
Proof
sigma_const_basis: Lemma o(,0, (A qq— number : 2)) =0

sc_basis_proof: Prove sigma const_basis from
sigma_ax {n « 0, F « (A qq— number : z)}

sigma._const_step: Lemma
o(#,n,(Aqq— number : z)) =n*z
S>o(f,n+1,(Aqq— number: z))=(n+1)*=z

sc_step_proof: Prove sigma_const_step from
sigma_ax {n « n+ 1, F «— (A qq— number :)}, pred_lemma

sc_proof: Prove sigma.const from
induction {prop < (A nn— bool :
o(i,nn, (A gqg— number : z)) = nn * z)},
sigma_const_basis,
sigma_const_step {n «— i@p1}

(* %)

sigma_mult_basis: Lemma
(4,0, (A qg— number : z * F(qq))) =z *0(s,0, F)

110 Appendix B. INTpX-printed Specification Listings

sm_basis_proof: Prove sigma_mult_basis from
sigma_ax {n « 0},
sigma.ax {n « 0, F « (A qq— number : z * F(qq))}

sigma_mult_step: Lemma
o(f,n, (A qq— number : z * F(qq))) = z x o (i, n, F)
Do(i,n+1,(Aqq— number : z * F(qq))) = z* o(i,n+ 1, F)

sm_step_proof: Prove sigma.mult_step from
sigma_ax {n « n+ 1, F — (A qq— number : z % F(qq))},
sigma_ax {n « n+ 1}
pred_lemma

sm_proof: Prove sigma_mult from
induction {prop « (A nn— bool :
o(i,nn, (A qq— number : z x F(qq))) = z * o(f,nn, F))},
sigma_mult_basis,
sigma_mult_step {n « i@p1}

(* ")

mod_.sigma_mult_proof: Prove mod_sigma_mult from
sigma_mult,
extensionality {F « (A qq— number : z * F(qq)),
G « (A qq— number : F(qq) * z)}

(* ")

sigma_sum_basis: Lemma
(4,0, F) + 0(1,0,G) = (4,0, (A qq— numbser : F(qq) + G(qq)))

ss_basis_proof: Prove sigma sum_basis from
sigma_ax {n + 0, F « (A qq— number : F(qq) + G(aq))},
sigma.ax {n < 0, F « (A qq— number : G(qq))},
sigma.ax {n « 0}

sigma_sum step: Lemima
a(i,n, F)+o(i,n,G) = o(¢,n,(Aqq— number : F(qq) + G(qq)))
30(: n+1,F)+o(i,n+1,G)
=¢(f,n+1,() qq— number : F(qq) + G(qq)))

Sigmaprops 111

ss_step_proof: Prove sigma_sum step from
sigma.ax {n « n+ 1, F « (A qq— number : F(qq) + G(qq))},
sigma_ax {n «- n+ 1, F « (A qq— number : G(qq))},
sigma_ax {n «— n+ 1},
pred lemma

ss_proof: Prove sigma_sum from
induction {prop < (A nn— bool :
o(s,nn, F) + o(¢,nn,G)
= o(i,nn, (A qg— mumber : F(qq) + G(aq))))},
sigma_sum_basis,
sigma_sum step {n « i@pl1}

(* *)

split_sigma basis: Lemma o(i,n, F) = ¢(1,0, F) + o(1,diff(n,0), F)

split_basis_proof: Prove split_sigma _basis from
sigma_ax, sigma_ax {n « 0}, diff ax {m « 0}, natpos

split_sigma step: Lemma
(n>m>a(i,n, F)=o0(i,m, F)+ o(i + m,diff(n, m), F))
D(n>m+1
do(i,n,F)=0o(i,m+1,F)+o(i + m+1,diff(n,m+ 1), F))

split_step_proof: Prove split_sigma step from
sigma_ax {n « m+ 1},
sigma.rev {i — ¢ +m+ 1, n « diff(n,m + 1)},
revsigma_ax {i « { + m, n « diff(n,m)},
sigma_rev {i « { + m, n « diff(n,m)},
pred lemma {n « m},
pred_diff,
diff zero,
natpos {n « m}

split_proof: Prove split_sigma from
induction {n « m,
prop «— (Ann— bool :
n 2 nn D o(i,n, F) = o(i,nn, F) + o(i + nn, diff(n, nn), F))},
split_sigma_basis,
split_sigma step {m « i@p1}

112 Appendix B. IATgX-printed Specification Listings

(* %)

sigma_abs_basis: Lemma
|o (3,0, F)| < o(4,0, (A qq— number : |F(qq)|))

sa_basis_proof: Prove sigma_abs_basis from
sigma_ax {n « 0},
sigma_ax {n « 0, F « (A qq— number : |F(qq)|)},
abs_ax0

sigma_abs_step: Lemma
lo(i,n, F)| < o(i,n, (Aqq— number : | F(qq)|))
> lo(i,n+1, F)| < o(t,n+ 1,(Aqq— number : |F(qq)}))

sa_step_proof: Prove sigma_abs_step from
sigma_ax {n «— n + 1},
sigma_ax {n « n+ 1, F «— (A qq— number : |F(qq)|)},
abs_ ax2 {x «— F({ +n),y « o(s,n, F)},
natpos,
pred_lemma

sa_proof: Prove sigma_abs from
induction {prop « (A nn— bool :
lo(s,nn, F)| < o(i,nn, (A qg— number : | F(qq)()))},
sigma_abs_basis,
sigma_abs_step {n « i@pl}

(* *)

bounded_lemma: Lemma
n > 0 Abounded(s,n + 1, F, z) O bounded(s, n, F, z)

bounded _proof: Prove bounded_lemma from
bounded_ax {k « k@pl},
bounded_ax {n « n+ 1, k « k@pl},
pred_lemma,
pred._ax

sigma_bound_basis: Lemma bounded(s,1, F,z) D o(s,1,F) < z

Sigmaprops 113

sb_basis_proof: Prove sigma_bound_basis from
bounded_ax {n « 1, k « 1},
sigma_ax {n « 0},
sigma_ax {n « 1},
pred_ax {n « 1}

alt_sigma_bound step: Lemma
n > 0Abounded(f,n+1,F,z)Ao(i,n,F)<nxz
Do({i,n+1L,F)<z+nxz

alt_sb_step_proof: Prove alt_sigma_bound step from
bounded ax {n «—n+1,k « ¢ +n},
sigma_ax {n « n+ 1},
pred lemma,
natpos

sigma_bound step: Lemma
n > 0Abounded(i,n+1,F,z)Ac(i,n,F) < n*z
Do(i,n+1,F)<(n+1)*=z

sb_step_proof: Prove sigma_bound_step from
alt_sigma bound step, mult_ax {x — n, y « z}

sb: Lemma n > 0 A bounded(s,n, F,z) > o(i,n,F) < nxz

sb_proof: Prove sb from
mod.inductionl {A « (A nn— bool : bounded(s, nn, F, 7)),
B < (Amm— bool : o(s,mm, F) < mm * z)},
bounded lemma {n « j@p1},
sigma_bound_basis,
sigma_bound step {n « i@pl1}

sigma_bound _proof: Prove sigma_bound {k « k@p2} from sb, bounded_ax

(* *)

sigmal: Lemma o(i,n+ 1, F) = F(i) + o(i + 1,n, F)
sigmal basis: Lemma o(i,1, F) = F({) + (s + 1,0, F)

114 Appendix B. IATpX-printed Specification Listings

slb_proof: Prove sigmal_basis from
sigma_ax {n « 0},
sigma_ax {i — ¢+ 1, n « 0},
sigma_ax {n « 1},
pred_ax {n « 1}

sigmal step: Lemma
o(i,n+1,F)=F()+o(i+1,n,F)
So(i,n+2,F)=F(i)+o(i+1,n+1,F)

sls_proof: Prove sigmal step from
gigma.ax {i — i+ 1,n —n+1},
sigma.ax {n — n +2},
pred lemma,
pred lemma {n « n + 1},
natpos

sigmal _proof: Prove sigmal from
induction {prop « (Ann— bool :
o(s,nn+ 1, F) = F(s)+ o({ + 1,nn, F))},
sigmal basis,
sigmal step {n « i@pl}

(* ")

sigma._rev_basis: Lemma o(3,0, F) = revsigma(i, 0, F)

srb_proof: Prove sigma_rev_basis from
sigma_ax {n « 0}, revsigma_ax {n « 0}

sigma_rev_step: Lemma
(Vil: o(il, n, F) = revsigma(il, n, F))
5 (Vi2: o(i2,n + 1, F) = revsigma(i2, n + 1, F))

srp_proof: Prove sigma.rev.step {il «— i2 + 1} from
revsigma.ax {i «— i2,n « n+1},
sigmal {i « i2},
pred_lemma,
natpos

Sigmaprops 115

sigma.rev_proof: Prove sigma_rev from
induction?2 {il « i1@p3,
i3 1,
prop2 « (Ai, nn— bool : ¢(i,nn, F) = revsigma(1, nn, F))},
sigma_rev_basis {i — i0@pl1},
sigma_rev_step {i2 « i2@pl, n « j@p1}

End sigmaprops

116 Appendix B. INTgX-printed Specification Listings

time: Module
Using arithmetics

Exporting clocktime, realtime, period, R, S, T°, T(*1), x1 € R(*?),
* 1 € S(*2) with arithmetics

Theory

clocktime: TYPE IS number

realtime: TYPE IS number

period: TYPE IS nat

R, S: clocktime (* Synchronizing periods *)
posR: Axiom 0 < R

posS: Axiom 0< S
Cl: Axiom R> 3% S
SinR: Lemma S < R

1: VAR period
T(1): function|period — clocktime]
T°: clocktime

T sup.ax: Axiom T0) =T%+iR
T.next: Lemma T0+1) = T706) 4+ R

T,T:,T3,11: VAR clocktime
*1 € R™*2): function|clocktime, period — boolean]

Rdef: Axiom T € R() = (3N:0<IAN < RAT =TW 4+ 1)
Ti_in_R: Lemma T() € R()

*1 € S(*2); function|clocktime, period — boolean]

Sdef: Axiom T € SO) = (AM:0<KNANNSSAT=T0) + R— S +1)
inRS: Lemma T € S 5 T € RY)

Tiin_S: Lemma T(t1) € §()

in.Slemma: Lemma T; € SO AT, € S6) o |y - Ty < S

Time 117

Proof

SinR _proof: Prove SinR from C1, posS, posR

Ti-proof: Prove Tiin_R from Rdef {T « TG 11~ 0}, abs_ax0, posR
inRS_proof: Prove inRS from Sdef, Rdef {Il — R ~ S + II@pl1}, SinR
T _next_proof: Prove T next from T sup_ax, T sup.ax {i « ¢ + 1}

Ti-in_S_proof: Prove Ti.in_S from
Sdef {Il «— S, T « T(*1}, posS, T_next

in_S_proof: Prove in_S_lemma from
Sdef {T « T1},
Sdef {T « T3},
abs_ax5 {x « II@pl, y « I1@p2, z « S}

End time

118 Appendix B. IATgX-printed Specification Listings

clocks: Module
Using time

Exporting proc, ¢,1(*2), p,C ,(,;2), (*2)(*3) (*2)(*3) nonfaulty
with time

Theory

proc: TYPE IS nat
p: VAR proc
¢+1(*2): function|proc, clocktime — realtime]

ng): function[proc, period — clocktime]

. . 0
zero_correction: Axiom C,(,) =0

i: VAR period
T,To,T1,T2,Tn: VAR clocktime
(*2)(*3) function|proc, period, clocktxme — clocktime] =

(A p, i, T— clocktime : T + C)
c,(,;z)(*3). function[proc, period, clocktime — realtime]

clockdef: Axiom c{)(T) = ¢,(A%)(T))

goodclock: function|proc, clocktime, clocktime — bool]
p: number

rho_pos: Axiom £ >0
rho_small: Axiom £ <1

gc.ax: Axiom
goodclock(p, To, Tn)
= (VT ,Te:
<N AT ST ATT' STNAT; <Tn
> lep(T) — e(T5) - (Ts — T)| < § x |73 — T

monotonicity: Theorem
goodclock(p, To, TN)ATo < W ATo S o ATy S TnAT: < Tn
D (T1 >Ty D cp(Tl) > Cp(Tz))

nonfaulty: function[proc, period — boolean]

Clocks 119

Al: Axiom nonfaulty(p,i) = goodclock(p, 4\”(T(®), A% (TC+1)))

Proof
z,y: VAR number
diminish: Lemma z > 0 D> % xz<z

diminish_proof: Prove diminish from
mult mon {x « £,y — 1,z «— z},
rho_small,
mult_ax {x « 1,y « z}

monoproof: Prove monotonicity from
gc-ax,
diminish {x A |T1 - Tzl},
abs_ax {a « ¢p(T1) — ¢p(T2) — (T1 - T2)},
abs_ax {a « T} — T3}

End clocks

120 Appendix B. IATpX-printed Specification Listings

algorithm: Module
Using clocks, sums

Exporting 2,4, A0, A4, AG%), skew, S14,51C, 52,5, ¢, 6,

*]
n, m with clocks

Theory

T,To, Ty, X, II: VAR clocktime
t: VAR period
p,q,r: VAR proc

ASZ): function|[proc, period — clocktime]

A*’;?,),z, Biflz: function|proc, proc, period — clocktime]

m,n: proc
€, 6p, 6: realtime
T, A: clocktime

C0.a: Axiom n >0

CO0b: AxiomO0O<mAm<n
COc: Axiom A >0

C2: Axiom § > ¥

C3: Axiom X > A

C4: Axiom A>6+e+5xS
C5: Axiom § > é6+p* R

Cé: Axiom §
>2x(e+pxS)+2xmxAf/(n—-m)+nxp*xR/(n—m)+p*xA
+nxp*xX/(n-m)

C2and3: Lemma A < S

Algl: Axiom C,(,”l) = Clg") + Ag‘)

Alg2: Axiom Al) = @7(Ar— number : A%Y))

Alg3: Axiom AY) = if r#pA|AL)| < A then A) else 0 end if

Algorithm 121

clock_prop: Lemma c,(,i+1)(T) =¥ T+ A,(,‘))
D2bar_prop: Lemma |E£’2| <A

skew: function[proc, proc, clocktilpe, perioc! — clocktime] =
(Ap, q, T, i— clocktime : |c{(T) — ¢{)(T)))
S1A: function[period — bool]

S1Adef: Axiom S1A(f) = (Vr: (m+1 < r Ar < n) D nonfaulty(r,)
S1C: function[proc, proc, period — bool]

S1Cdef: Axiom

$1C(p, g,)
= (nonfaulty(p,) A nonfaulty(q,i) AT € R() > skew(p, q,T,3) < 6)

S1C.lemma: Lemma S1C(p, ¢,1) D S1C(g, p,1)
S2: function|proc, period — bool]

$2.ax: Axiom S2(p,) = (Jcf*V — ¢ < x)
A0: Axiom skew(p, ¢, T®),0) < &

A2: Axiom nonfaulty(p, 1) A nonfaulty(g,s) A S1C(p, ¢,1) A S2(p, 1)
>laf)i<s | o
A(3To: To€ SO Al (To + AL)) -) (T0)| < €)

A2 aux: Axiom Ag,), =0

Theorem_1: Theorem S1A(s) > S1C(p, q,¢)
Theorem_2: Theorem S2(p,¢)

Proof

C2and3_proof: Prove C2and3 from C2, C3

clock_proof: Prove clock_prop from
clockdef {T — T + A}, clockdef {i « i +1}, Algl

D2bar_prop_proof: Prove D2bar_prop from
Alg3 {r — p, p «+ ¢}, COc, abs_ax0

122 Appendix B. IATgX-printed Specification Listings

S1C_lemma._proof: Prove S1C.lemma from
S1Cdef,
S1Cdef {p < ¢, q < p},
abs_ax4 {x « cgi)(T@pl), y — cg)(T@pI)}

Theorem_2_proof: Prove Theorem 2 from

S2.ax,
Algl,
D2bar.prop {p < pp@p7, q « p},
Alg2,
CO_a,
CO_c,
mean_bound {i « 1,

e n,

X+ A,

F «— (Ar— number : |E$'2|)},
abs.mean {i — 1, j « n, F «— (Ar— number : A{))},
C3

End algorithm

Clockprops 123

clockprops: Module
Using clocks, algorithm, natinduction
Theory

T,To, Ty, T2, Tn,II: VAR clocktime
p,q: VAR proc
1: VAR period

upper_bound: Lemma

T e SOA N < R- 8> AD(T + 1) < AFH) (T6+2)
lower bound: Lemma 0 < II D A,(,o) (T) < A,(,'.)(T(") +II)
lower.bound2: Lemma

T € SOA M| < R~ > ATO) < al)(T + 1)
adj_always.pos: Lemma Ag) (T6)) > T°
nonfx: Lemma nonfaulty(p, ¢+ 1) D nonfaulty(p, 1)
S1A_lemma: Lemma S1A(f + 1) O S1A(s)
Proof
i2R: Lemma T(+2) =T() + 2« R
i2R_proof: Prove i2R from T sup.ax {i «+ ¢ + 2}, T.sup_ax

upper_bound_proof: Prove upper_bound from
Sdef,
i2R,
abs_ax6 {x — I,y — R- S},
S2_ax,
Theorem_2,
abs_ax6 {x — C,(,Hl) - Cpi), y « X},
C2

basis: Lemma A (T(®) > 70

124 Appendix B. IATpX-printed Specification Listings

basis_proof: Prove basis from zero_correction, T sup_ax {i « 0}
small shift: Lernma C,(,"H) - C,(,‘) >-R

small shift_proof: Prove small shift from .
S2_ax, Theorem_2, abs.ax {a « 0,5‘“) - C,(,') }, C2, SinR

inductive step: Lemma A{)(T®) > 70 5 AU (76+1)) > 70
ind_proof: Prove inductive_step from small_shift, T next

adj_pos_proof: Prove adj_always_pos from _
induction {n « 1, prop «— (Ai— bool : A;')(T(")) > T9)},
basis,
inductive step {i + i@pl}

lower _bound_proof: Prove lower bound from
adj_always_pos, T sup_ax {i « 0}, zero_correction

lower bound2_proof: Prove lower_bound2 from
lower bound {I — T — T{) 4 I1@c}, Sdef, abs_ax {a « II}, SinR

gc_prop: Lemma
goodclock(p, To, Tn) ATo < T AT < Tn D goodclock(p, To, T')

gc-proof: Prove gc_prop from
gcax {Ty «— T1@p2, T; « T,@p2}, gc.ax {Tn « T}

bounds: Lemma
AP(TO) < al)(r+n)
/\AS)(T("'H)) < A£'+1)(T(i+2))

bounds_proof: Prove bounds from
upper.bound {IT +~ 0, T « T(+1)}
lower bound2 {Il «— 0, T « T(+1)}
abs_ax0,
SinR,
Tiin_S

Clockprops

nonfx_proof: Prove nonfx from
Al {i—i+1},
Al,
gc_prop {Tp — AY)(TO),
Ty A,(,i+1)(T("+2)),
T < A0(TE),
bounds

S1A _lemma._proof: Prove S1A lemma from
S1Adef, S1Adef {i « §+ 1, r «— r@p1}, nonfx {p « r@pl}

End clockprops

125

126 Appendix B. IATgX-printed Specification Listings

lemmal: Module
Using algorithm, lemma2
Theory

p,q: VAR proc
1: VAR period

lemmaldef: Lemma
S1C(p, q, s) A S2(p, 1) A nonfaulty(p, { + 1) A nonfaulty(g, s+ 1)

- lAq,,[<A

Proof

lemmal _proof: Prove lemmaldef from
A2,
lemma2c {IT — A{), T — T,@p1},
S1Cdef {T « To@pl},
abs_ax4 {x « c,, (To@pl), y < ¢g)(To@pl)},
abs_ax4 {x « cp)(To@pl +11@p2),y « c,, (To@pl) + II@p2},
abs_ax2b {x « y@p5 — x@p5, y « y@p4 — x@p4, z « x@p5 — y@p4},
nonfx,
nonfx {p « ¢},
inRS {T « To@p1},
mult4 {x — £,y — |a{}], 2z — 8},
rho_pos,
C4

End lemmal

Lemma2

lemma2: Module
Using algorithm, clockprops
Theory

p,q,r: VAR proc

s: VAR period

T: VAR clocktime
IT, ®: VAR realtime

lemma2def: Lemmma
nonfaulty(p,s + 1)

A ASN(T) < AFTD(T0+2))
A(O)(T(o)) < A¥(T)
A Af)$T + 1) < AFT(T(+2))
AA 0)(T(0)) < AY(T +)
> T+ 1) - ((T) + 1) < £ x m|

lemmaZ2a: Lemma
nonfaulty(p,: +1)A IH-HI)] <R-SA|®<R-SATeSH
[T+ @+ 1) - (fUT + &) +)| < £ x 1|

lemma?2b: Lemma
nonfaulty(p,t +1)A|®] < S A< SATest)
- Icp (T+o+1)- (cp (T+®)+M)| < § x|

lemma2c: Lemma
nonfaulty(p,s +1)A IHI <SATesl)

> Jef (T + 1) - (§)(7) +)| < § x 1]

lemma2d: Lemma
nonfaulty(p,i) AOSIATI < R
5 [T +10) ~ (fHTO) + W) < £ x T

127

128 Appendix B. IATgX-printed Specification Listings

Proof

lemma2_proof: Prove lemma2def from
Al i —1i+1},
ge.ax {Tp — A},o) (T,
Ty « Ay (16+2),
T2 — Ag)(T)a
Ty — AT+ M)},
clockdef,
clockdef {T « T + II}

lemmaZ2a_proof: Prove lemma2a from
lemma2def {T « T + ¥},
upper_bound {Il « & + IT},
lower bound2 {II ~— @ + IT},
upper_bound {IT — ®},
lower bound2 {II — &}

lemma2b_proof: Prove lemma2b from
lemma2a, abs_ax1 {x « I1}, abs_ax2 {x « &, y «+ IT}, C1, posS, posR

lemma2c¢_proof: Prove lemma2c from lemma2b {® « 0}, abs_ax0, posS

lemma2d_proof: Prove lemma2d from
Al,
gcax {Tp — A,‘,°) (T(9),
TN — A;i)(T(i+1)),
Ty — AD(TO) + 1),
T — AD(TO)},
clockdef {T « T{)},
clockdef {T « T() + 11},
posR,
pos_abs {x « IT},
lower bound,
lower bound {Il « 0},
T_next

End lemma?2

Lemma3 129

lemma3: Module
Using algorithm, lemma2
Theory

P, q: VAR proc

1: VAR period

T,To, Ty, Ts: VAR clocktime
IT: VAR realtime

lemma3def: Lemma

S1C(p, g, 1)
A 82(p, 1) A nonfaulty(p,{ + 1) A nonfaulty(q,i + 1) A T € S

o) [c,(,'.)(T-f- A§'2 - cg‘-)(T)l <e+pxS

Proof

lemma3_proof: Prove lemma3def from
A2, ‘
rearrange alt {x « c,(,‘)(T + Ag',),),
y « e(T), .
u— cg)(To@pl + Ag,), ,
v — T - To@pl,
w ¢ (To@p1)),
lemma2b {T « To@pl, ® — Ag'g, Il T - To@pl},
lemma2c {p « ¢, T « To@pl, Il — T — T,@p1},
nonfx,
nonfx {p « g},
mult4 {x «— £,y « |T - To@pl|, z « S},
rho_pos,
half3 {x « p,y « S},
mult_ax {x « p,y « S},
in S lemma {T} « T, T — To@pl}

End lemma3

130 Appendix B. IATgX-printed Specification Listings

lemma4: Module
Using algorithm, lemmal, lemma2, lemma3
Theory

p,q,r: VAR proc
1: VAR period
T: VAR clocktime

lemmaddef: Lemma
S1C(g, ,1)
A S1C(p, ¢,%)
A S1C(p,r,t)
A 82(p,1)
A 82(g,1)
A S2(r, 1)
A nonfaulty(p,{ + 1)
A nonfaulty(g, s + 1) A nonfaulty(r,s + 1) AT € S¢)

5 1e(T) + AY) — (P(T) + Al < 25 (¢ +p+ 5+ £ x A)

Proof

To,T1,T2: VAR clocktime
II: VAR realtime
u,v,w,z,v,2: VAR number

rearrangel: Lemma z —y=(u—-y) - (v-2z)+ (v-w) - (u - w)
rearrangel_proof: Prove rearrangel

rearrange2: Lemma
(u-y) = (v—2)+(v-w) - (u-w)
<lu—yl+lo -2+ |v=w|+]u-w|

rearrange2_proof: Prove rearrange2 from
abs.ax2c {w « (u—y), x — (z—-v),y « (v - w), z — (w - u)},
abs_ax3 {x « (v - z)},
abs_ax3 {x « (u —w)}

rearrange3: Lemma |z —y| < |[u—y|+ |v—z|+ |v — w| + |[u — w|

Lemma4 131

rearrange3_proof: Prove rearrange3 from rearrangel, rearrange2

sublemmal: Lemma
S1C(p, r, 1) A S2(p, 1) A nonfaulty(p,s + 1) A nonfaulty(r, s + 1)
Al A
] Arp = Arp

sublemmal_proof: Prove sublemmal from lemmaldef {q « r}, Alg3,
A2_aux

lemma2x: Lemma
S1C(p, r, 1)
A S2(p,) A l}onfault:.y(p, f+ 1)_/\ nonfaulty(r,i + 1) A T € S0))
> 1T+ a8) - () + A < g x A

lemma2x_proof: Prove lemma2x from
lemma2c {II « A,(.',), ,
lemmaldef {q « r},
C2and3, ‘
multd {x « £,y « IA,(-'g , 2 +— A},
rho_pos

lemmad4 _proof: Prove lemmad4def from
rearrange3 {x « c},')(T) + 55‘,),,
y — () + AL,
u (T + alY),
vV — cg')(T + AS',; ,
w e (T)},
sublemmal,
sublemmal {p + ¢},
lemma2x,
lemma2x {p « ¢},
lemma3def {q « r},

lemma3def {p « ¢, q « r},
S1C.lemma

End lemma4

132 Appendix B. IATgX-printed Specification Listings

lemma5: Module
Using algorithm, clockprops
Theory

p,q,r: VAR proc
T: VAR clocktime
t,7: VAR period
lemmabdef: Lemma
S1C(p, g,5) A nonfgulty(p,i+ 1) A nonfaulty(q,i+ 1)AT € s
51T +AY - (1) + A <6 +2+A

Proof

a,b,z,y: VAR clocktime

rearrangel: Lemma (a+z) - (b+y)=(a-b)+z—y
rearrangel_proof: Prove rearrangel

rearrange2: Lemma |(a+ z) — (b+ y)| < |a — b| + |z] + |y|

rearrange2_proof: Prove rearrange2 from
rearrangel, abs_ax8, abs_ax2 {x «— (a — b),y « (z - y)}

lemmabproof: Prove lemmanef from
rearrange2 {a «— c,(,‘)(T),
b« Ct(l‘) (1),
X + [&?3,
y — Al
D2bar_prop {p < r, q < p},
D2bar._prop {p + r, q < ¢},
inRS,
S1Cdef,
nonfx,
nonfx {p « ¢}

End lemmab

Lemma6

lemma6: Module
Using algorithm, clockprops, lemma2
Theory

p,¢: VAR proc
+: VAR period
T,II: VAR clocktime

sublemma_A: Lemma
nonfaulty(p, {) A nonfaulty(q,i) A T € R()
> skew(p, q, T, 1) < skew(p,q, T®),i) + p+ R

lemma6def: Lemma
nonfaulty(p, 1 + 1) A nonfaulty(q,f + 1) AT € R(+1)
D skewgp, ¢, T,i+1) ' _
<1 (@) + AP — ((+0) + AP
+p*R+pxZ

Proof
sublemmal: Lem.maOSl'I/\HSRDZ*%xl’ISp*R

subl_proof: Prove sublemmal from
mult2 {x « £,y « R},
times_half {x « p},
multd {x « £,y « I,z — R},
rho_pos,
mult_ax {x «— p, y «— R}

sub_A _proof: Prove sublemma_A from
Rdef,
rearrange_alt {x «— cg) (1),
y < e (T),
u g (T0),
v « I1@p1,
w e (1)),
lemma2d {II — I1@p1},
lemma2d {p « ¢, Il « II@p1},
sublemmal {II « II@p1}

133

134 Appendix B. WTgpX-printed Specification Listings

sublemma2: Lemma _) ‘ _
skew(p,g, 7,5+ 1) = [(T + AD) — (7 + A0

sub2_proof: Prove sublemma2 from clock_prop, clock.prop {p < ¢}

lemma6 _proof: Prove lemma6def from
sublemma A {i « ¢+ 1},
sublemma2 {T « T(+1)},
rearrange {x «— cg) (T6+1) 4 A,(,‘)),
y e (16 4 AD),
u — §)(TE+),
ve o,
W cg‘)(T(Hl))’
z - A7),
lemma2c {T « T0+1) T Ag)},
lemma2c {T « T0+1), IT Aq(,‘.), P+ g},
Algl,
Algl {p «+ ¢},
S2_ax,
S2ax {p « g},
Theorem_2,
Theorem_2 {p + ¢},
mult4 {x « £,y « |A,(;)|, z — X},
multd {x « £,y « lAg(,")l, z — I},
rho_pos,
Tiin.S,
c2,
half3 {x < p, y < L},
mult_ax {x — p, y « X}

End lemma6

Summations 135

summations: Module
Using algorithm, sums, lemma4, lemma5, lemma6
Theory

p,q,r: VAR proc
T: VAR clocktime
t: VAR period

culmination: Lemma
S1A(s + 1) A SI1C(p, ¢, 1)
D (nonfaulty(p,s + 1) A nonfaulty(g,s + 1) AT € R(+1)
D skew(p,q,T,i+1)
< ((6+2*A)*m+2*(p*S+e+§x A)x(n—m))/n
+p*R+p*X)

Proof
11: Lemma |c{)(76+D) + A{) - (f)(706+) 1+ A())
< @1(Ar— number: . .
e5(T60) + A8 ~ (T e+n) + A

12: Lemma |ef/(T6+)) + Al — ((16+1)) 4 A
<ETHAr— number : _ ' .
68 (6+0) + Af - (e (16+) + &)
+ X m+1(Ar— number :
/ @+ 0) + A8 - (& (@) + 2K
n

13: Lemma S1A(s + 1)
A S1C(p, ¢,) A nonfaulty(p,s + 1) A nonfaulty(q, s + 1)
D> X1'(Ar— number :
e (T6D) + A — (cf)r+0) + A
<S(6+2+A)xm

136 Appendix B. INTgX-printed Specification Listings

14: Lemma S1A(s + 1)
A S1C(p, q,1) A nonfaulty(p, ¢ + 1) A nonfaulty(g,s+ 1)
D Y m+1(Ar— number :
)T E+D) + Af) - () (6+D) + A
<2x(pxS+e+ExA)*(n—m)

15: Lemma S1A(s + 1)
A 81C(p, g, i) A nqnfaulty(p, i+1)A nopfaulty(q, i+1)
> e /(T6D) + A - (16D + AP
S((6+2+A)tm+2x(p*+S+e+ ExA)x(n—m))/n

11_proof: Prove 11 from
Alg2,
Alg2 {p < ¢}, _
rearrange_sum {x — c)(T(+1)),
y - e (T6),
F — (Ar— number : AY)),
G «— (Ar— number : A%),
11,
j+n},
abs.mean {i « 1,
jen,
F «— (Ar— number : x@p3 + AY) — (yeps + A'))},
C0.a

12_proof: Prove 12 from

11,
split_mean {i « 1,

jen,

k —m,

F «— (Ar— number:

66T 6+0) + AR} - () (2 6+0) + AR,

CO._a,
CO0.b

Summations 137

bound _faulty: Lemma
S1A(s + 1) A S1C(p, ¢,1)
A1 < rAr < mAnonfaulty(p, s+ 1).A nonfaulty(g,s + 1)
> [e(TED) + AR - ((r6+) + AR
<6§+2xA

bound faulty proof: Prove bound_faulty from
lemma5def {T « T(+1)}, Tiin S

13_proof: Prove 13 from
sum_bound {F « (Ar— number :
e (76) + A8 — (cft+n) + A,

X—6+2xA,
11,
i+ m},

bound faulty {r « pp@p1},

C0b

52 _pqr: Lemma S2(p,) A S2(g,1) A S2(r,)

S2_pqr_proof: Prove S2_pqr from
Theorem_2, Theorem_2 {p «+ ¢}, Theorem 2 {p « r}

bound_nonfaulty: Lemma
S1A(i + 1) A S1C(p, g, §)
Am+1<rAr < nAnonfaulty(p,s + 1) A nonfaulty(g,i + 1)
> 16 (T60) + A8 — ()T 6+D) + ALY
<2+(pxS+e+£xA)

138 Appendix B. IATgX-printed Specification Listings

bound_nonfaulty proof: Prove bound.nonfaulty from
S1Adef {i — 1 +1},
S1A lemma,
S1Adef,
nonfx,
nonfx {p + ¢},
Theorem_1 {q « r},
Theorem_1 {p «— ¢, q « r},
S2.par,
lemmaddef {T « T0+1)},
Tiin S
14_proof: Prove 14 from
sum_bound {F « (A r— number :
e (T 0) + AL — () (16 0) + BR))),
x—2x(pxS+e+ £ xA),
i—m+1,
jen},
bound_nonfaulty {r « pp@pl},
Co0b

15_proof: Prove 15 from
12,
13,
14,
div.mon2 {x < Y_T*(A r— number :
e (T6+) + Af) — () (7 6+0) + AR))
+ Xm+1(Ar— number :
le§) (@640 + AL - (L (76+0) + A8Y))),
y«-—(5+2*A)*m+2*(p*S+€+%xA)*(n—m),
z —n},
C0-a

culm_proof: Prove culmination from lemma6def, 15, S1Adef {i «— ¢+ 1}

End summations

Juggle

juggle: Module
Using algorithm
Theory

rearrange_delta: Lemma
§>2%(e+p*S)+2*m*xA/(n—m)+n*pxR/(n—m)
+pxA
+n*p*XT/(n—m)
D62 ((6+2+A)*m+2%(e+p*S+4§xA)*(n—m))/n
+p*R
+pxZ

Proof
a,b,bl,b2,b3,b4,b5,b6, ¢, z,y: VAR number

distrib6: Lemma
(b1 +b2+b3+ b4+ b5+ b6)*c
=bl*c+b2*c+b3%xc+bdxc+bSxc+bbxc

distrib6_proof: Prove distrib6é

distrib6_mult: Lemma
(b1 4+ b2+ b3+ b4 + b5 + b6) x ¢
=blxe+b2%xc+b3xec+bdxc+b5sxXxc+bbxc

distrib6_mult_proof: Prove distrib6_mult from

distrib6,

mult_ax {x « bl +b2+ b3+ b4 +b5+b6, y « c},
mult_ax {x « bl,y « ¢},

mult_ax {x « b2,y «— ¢},

mult_ax {x « b3,y « ¢},

mult_ax {x « b4,y + ¢},

mult_ax {x « b5,y « ¢},

mult_ax {x « b6,y « ¢}

mult_ineql: Lemma
a>bl4+b2+b3+b4+b5Ac>0
Daxc2>2blXxe+b2xec+b3xec+bdxc+bdxe

139

140 Appendix B. IATgX-printed Specification Listings

mult_ineql_proof: Prove mult_ineql from
distrib6_mult {b6 « 0},
mult_.mon2 {x « bl +b2+b3+bd+b5,y « a,z « c},
mult_ax {x « 0, y « c}

distrib6_div: Lemma
¢> 0> (bl+b2+b3+bd+b5+b6)/c
=bl/c+b2/c+b3/c+bd/c+Db5/c+b6/c

reciprocal: Lemma y #0> zx 1/y=z/y

reciprocal_proof: Prove reciprocal from
quotient_ax, mult_ax {y « 1/y}

distrib6._div_proof: Prove distrib6_div from

distrib6_mult {c « 1/c},

reciprocal {x <~ b1+ b2 + b3+ b4 + b5+ b6, y « ¢},
reciprocal {x + bl, y « ¢},

reciprocal {x « b2,y « ¢},

reciprocal {x « b3,y « ¢},

reciprocal {x « b4,y «~ c},

reciprocal {x « b5, y « ¢},

reciprocal {x « b6, y « ¢}

cancel mult: Lemma ¢>0Aaxc>bDa>b/c

cancel_mult_proof: Prove cancel_mult from
div.amon2 {z «¢,x « b,y « a x c},
cancellation mult {x « a,y « ¢}

mult_ineq2: Lemma
¢>0Aaxc>bl+b2+b3+bd+b5+b6
Da>bl/c+b2/c+Db3/c+bd/c+b5/c+b6/c

mult_ineq2_proof: Prove mult.ineq2 from
cancel mult {b < bl + b2 + b3 + b4 + b5 + b6}, distrib6_div

distrib4_div: Lemma
¢>0D>bl/c+b2/c+b3/c+b4/c=(bl+b2+b3+bd)/c

Juggle 141

distrib4_div_proof: Prove distrib4_div from
distrib6_mult {b5 < 0, b6 «— 0, ¢ + 1/c},
reciprocal {x «— bl + b2+ b3+ b4,y « ¢},
reciprocal {x « bl, y « ¢},
reciprocal {x « b2,y « ¢},
reciprocal {x «— b3,y « ¢},
reciprocal {x «— b4,y « ¢},
mult_ax {x — 0,y « 1/c}

stepl: Lemma
6>2%(e+pxS)+2xmxA/(n—m)+n*xp* R/(n—m)

+pxA
+n*p*xX/(n—m)
Déxn—m
>2x(e+p*xS)xn-m+2xm+A+n*xp+R+prxAxn—-m
+nxp*xX

stepl_proof: Prove stepl from

mult_ineql {a « §,

c—n-—m,

bl — 2% (e+p*S),

b2 —2*m=* A/(n - m),

b3 — n*p* R/(n—m),

bd—pxA,

b5 « nxp*xT/(n - m)},
mult div {x — 2+m=* A,y — n —m},
mult div {x «— n*xpx R,y « n—m},
mult div {x «— n*xp*Z,y « n—m},

Cob

step2: Lemma
§xn-m>2x%(c+p*S)Xn—-m+2xm*xA+n*p*R
+pxAXn—m
+nxpxX
D6xn>86xm+2+(e+pxS)xn—-m+2xm*xA+nxp*xR
+prAXn—m
+n*xp*xX

142 Appendix B. IATgX-printed Specification Listings

step2_proof: Prove step2 from
mult_ax {x — §,y «n—m},
mult.ax {x «— §,y «— n},
mult_ax {x « §,y «+ m}

step3: Lemma
§xn>6xm+2x(e+pxS)xn—-m+2+sm+xA+nxp*R
+prxrAXn—m
+nxpxY
D26>26xm/n+2x(e+pxS)xn—m/n+2+«m*xA/n+p*R
+p*xAXn—-m/n
+p*X

step3_proof: Prove step3 from

mult_ineq2 {a « §,

ce—n,

bl « § X m,

b2 —2%(c+p*8S)xn-m,

b3 —2xm=xA,

b4 —n*xpx R,

b5 —p*Axn~—m,

b6 — n*px X},
cancellation {x « p* R, y « n},
cancellation {x «— p* I,y « n},
C0.a

step4: Lemma
§>26xm/n+2+(e+prxS)xn—-m/n+2xmxA/n+pxR
+p*xAxn—m/n
+p*X
D262 (6xm+2*(e+p*S)xn—m+2+m*xA+pxAXn—m)/n
+p*R
+pxX

Juggle 143

step4._proof: Prove step4 from
C0_a,
distrib4_div {c < n,
bl — 6 xm,
b2 — 24 (e+p*8S)xn—m,
b3 «— 2xmx A,
b4 < p* A x n — m}

step5: Lemma
62(6xm+2+(c+p*S)xn-m+2«xm*A+p*xAxn—m)/n
+p*R
+pxZ
D62((6+2%A)xm42%(c+p*xS+£x A)*(n—m))/n
+p*R
+pxX

stepb_proof: Prove step5 from
mult_ax {x « 6,y «— m},
mult_ax {x < p* A,y « n —m},
mult ax {x « 2*(e+p*S),y — n—m},
half3 {x « p,y « A},
mult_ax {x < p,y — A}

final: Prove rearrange_delta from stepl, step2, step3, step4, step5
End juggle

144 Appendix B. WTgpX-printed Specification Listings

main: Module

Using natinduction, algorithm, lemma6, summations, juggle
Proof

p,q,r: VAR proc
1,7,k: VAR period
T: VAR clocktime

basis: Lemma S1A(0) D S1C(p, ¢,0)

basis_proof: Prove basis from
S1Adef {i < 0}, sublemma_A {i «— 0}, S1Cdef {i + 0}, A0, C5

ind_step: Lemma S1A(i + 1) A S1C(p, ¢,7) D S1C(p,q,5+ 1)

ind_proof: Prove ind_step from
culmination, rearrange._delta, S1Cdef {i—i+1},C6

Theorem_1_proof: Prove Theorem_1 from
basis,
ind_step {i «— i@p3},
mod_induction {n « 1,
A — (Ak— bool : S1A(k)),
B « (A k— bool : S1C(p, ¢,k))},
S1A_lemma {i + j@p3}

End main

Appendix C

Proof-Chain Analysis

This Appendix reproduces the output from the EHDM Proof Chain Analyzer
for the two Theorems proved in the specification.

C.1 Clock Synchronization Condition S2

The proof chain for Theorem_2 in the specification is given below in full. It
can be seen that the proof chain is complete.

Proof chain for formula Theorem_2 in module algorithm

algorithm.Theorem_2
is the conclusion of the proof
algorithm.Theorem_2_proof

Proof algorithm.Theorem_2_proof (which is PROVED) establighes
algorithm.Theorem_2

Its premises are:
algorithm.S2_ax
algorithm.Algl
algorithm.D2bar_prop
algorithm.Alg2
algorithm.CO_a
algorithm.CO_c
sums .mean_bound
sums.abs_mean
algorithm.C3

145

146 Appendix C. Proof-Chain Analysis

algorithm.S52_ax
is an axiom

algorithm.Algl
is an axiom

algorithm.D2bar_prop
is the conclusion of the proof
algorithm.D2bar_prop_proof

Proof algorithm.D2bar_prop_proof (which is PROVED) establishes
algorithm.D2bar_prop

Its premises are:
algorithm.Alg3
algorithm.CO_c
absolutes.abs_ax0

algorithm.Alg3
is an axiom

algorithm.CO_c
is an axiom

absolutes.abs_ax0
is the conclusion of the proof

absolutes.abs_proof0

Proof absolutes.abs_proofO (which is PROVED) establishes
absolutes.abs_ax0

Its premises are:
absolutes.abs_ax

absolutes.abs_ax
is an axiom

algorithm.Alg2
is an axiom

algorithm.CO_a
is an axiom

algorithm.CO_c

C.1. Clock Synchronization Condition S2 147

has already been justified

sums .mean_bound
is the conclusion of the proof
sums .mean_bound_proof

Proof sums.mean_bound_proof (which is PROVED) establishes
sums.mean_bound

Its premises are:
sums . sum_bound1
sums.mean_ax
arithmetics.div_prod

sums . sum_bound1
is the conclusion of the proof
sums . sum_bound1_proof

Proof sums.sum_boundi_proof (which is PROVED) establishes
sums . sum_bound1

Its premises are:
sums . sum_bound_mod
arithmetics.mult_ax

sums , sum_bound_mod
is the conclusion of the proof
sums . sum_bound_mod_proof

Proof sums.sum_bound_mod_proof (which is PROVED) establishes
sums.sum_bound_mod

Its premises are:
sums.sum_ax
sums . sigma_bound2
natprops.pred_diff
natprops.diff_ax
natprops.diff_ax

sums . sum_ax
is an axiom

sums.sigma_bound2
is the conclusion of the proof

148 Appendix C. Proof-Chain Analysis

sums.sigma_bound2_proof

Proof sums.sigma_bound2_proof (which is PROVED) establishes
sums.sigma_bound2

Its premises are:
sigmaprops.sigma_bound
arithmetics.mult_ax

sigmaprops.sigma_bound
is the conclusion of the proof
sigmaprops.sigma_bound_proof

Proof sigmaprops.sigma_bound_proof (which is PROVED) establishes
sigmaprops.sigma_bound

Its premises are:
sigmaprops.sb
sigmaprops.bounded_ax

sigmaprops.sb
is the conclusion of the proof
sigmaprops.sb_proof

Proof sigmaprops.sb_proof (which is PROVED) establishes
sigmaprops.sb

Its premises are:
natinduction.mod_inductioni
sigmaprops.bounded_lemma
gigmaprops.sigma_bound_basis
sigmaprops.sigma_bound_step

natinduction.mod_inductionl
is the conclusion of the proof
natinduction.mod_inductioni_proof

Proof natinduc-
tion.mod_inductioni_proof (which is PROVED) establishes
natinduction.mod_inductionl

Its premises are:
pnatinduction.mod_induction_m

C.1. Clock Synchronization Condition S2

natinduction.mod_induction_m
is the conclusion of the proof
natinduction.mod_m_proof

Proof natinduction.mod_m_proof (which is PROVED) establishes
natinduction.mod_induction_m

Its premises are:
natinduction.induction_m

natinduction.induction_m
is an axiom

sigmaprops.bounded_lemma
is the conclusion of the proof
sigmaprops.bounded_proof

Proof sigmaprops.bounded_proof (which is PROVED) establishes
sigmaprops.bounded_lemma

Its premises are:
sigmaprops.bounded_ax
sigmaprops.bounded_ax
natprops.pred_lemma
natprops.pred_ax

sigmaprops.bounded_ax
is an axiom

sigmaprops.bounded_ax
has already been justified

natprops.pred_lemma
is the conclusion of the proof
natprops.pred_lemma_proof

Proof natprops.pred_lemma_proof (which is PROVED) establishes
natprops.pred_lemma

Its premises are:
natprops.pred_ax

natprops.natpos

natprops.pred_ax

149

150 Appendix C. Proof-Chain Analysis

is an axiom

natprops.natpos
is an axiom

natprops.pred_ax
has already been justified

sigmaprops.sigma_bound_basis
is the conclusion of the proof
sigmaprops.sb_basis_proof

Proof sigmaprops.sb_basis_proof (which is PROVED) establishes
sigmaprops.sigma_bound_basis

Its premises are:
sigmaprops.bounded_ax
sigmaprops.sigma_ax
sigmaprops.sigma_ax
natprops.pred_ax

sigmaprops.bounded_ax
has already been justified

sigmaprops.sigma_ax
is an axiom

sigmaprops.sigma_ax
has already been justified

natprops.pred_ax
has already been justified

sigmaprops.sigma_bound_step
is the conclusion of the proof
sigmaprops.sb_step_proof

Proof sigmaprops.sb_step_proof (which is PROVED) establishes
sigmaprops.sigma_bound_step

Its premises are:
sigmaprops.alt_sigma_bound_step
arithmetics.mult_ax

C.1. Clock Synchronization Condition 52 151

sigmaprops.alt_sigma_bound_step
is the conclusion of the proof
sigmaprops.alt_sb_step_proof

Proof sigmaprops.alt_sb_step_proof (which is PROVED) establishes
sigmaprops.alt_sigma_bound_step

Its premises are:
sigmaprops.bounded_ax
sigmaprops.sigma_ax
natprops.pred_lemma
natprops.natpos

sigmaprops.bounded_ax
has already been justified

sigmaprops.sigma_ax
has already been justified

natprops.pred_lemma
has already been justified

natprops.natpos
has already been justified

arithmetics.mult_ax
is an axiom

sigmaprops.bounded_ax
has already been justified

arithmetics.mult_ax
has already been justified

natprops.pred_diff
is the conclusion of the proof
natprops.pred_diff_proof

Proof natprops.pred_diff_proof (which is PROVED) establishes
natprops.pred_diff

Its premises are:
natprops.pred_ax
natprops.diff_ax

152

natprops.diff_ax

natprops.pred_ax
has already been justified

natprops.diff_ax
is an axiom

natprops.diff_ax
has already been justified

natprops.diff_ax
has already been justified

natprops.diff_ax
has already been justified

arithmetics.mult_ax
has already been justified

sums.mean_ax
is an axiom

arithmetics.div_prod

is the conclusion of the proof
arithmetics.div_prod_proof

Appendix C. Proof-Chain Analysis

Proof arithmetics.div_prod_proof (which is PROVED) establishes

arithmetics.div_prod
Its premises are:
arithmetics.div_mult

arithmetics.mult_ax

arithmetics.div_mult

is the conclusion of the proof
arithmetics.div_mult_proof

Proof arithmetics.div_mult_proof (which is PROVED) establishes

arithmetics.div_mult

Its premises are:
arithmetics.div_mon

arithmetics.cancellation_mult

C.1. Clock Synchronization Condition S2 153

arithmetics.div_mon
is the conclusion of the proof
arithmetics.div_mon_proof

Proof arithmetics.div_mon_proof (which is PROVED) establishes
arithmetice.div_mon

Its premises are:
arithmetics.mult_mon
arithmetics.quotient_mult
arithmetics.quotient_mult
arithmetics.quotient_ax2

arithmetics.mult_mon
is an axiom

arithmetics.quotient_mult
is the conclusion of the proof
arithmetics.quotient_mult_proof

Proof arithmetics.quotient_mult_proof (which is PROVED) establishes
arithmetics.quotient_mult

Its premises are:
arithmetics.quotient_ax
arithmetics.mult_ax

arithmetics.quotient_ax
is an axiom

arithmetics.mult_ax
has already been justified

arithmetics.quotient_mult
has already been justified

arithmetics.quotient_ax2
is an axiom

arithmetics.cancellation_mult
is the conclusion of the proof
arithmetics.cancellation_mult_proof

154 Appendix C. Proof-Chain Analysis

Proof arith-
metics.cancellation_mult_proof (which is PROVED) establishes
arithmetics.cancellation_mult

Its premises are:
arithmetics.cancellation
arithmetics.mult_ax

arithmetics.cancellation
is the conclusion of the proof
arithmetics.cancellation_proof

Proof arithmetics.cancellation_proof (which is PROVED) establishes
arithmetics.cancellation

Its premises are:
arithmetics.div_times
arithmetics.quotient_axl

arithmetics.div_times
is the conclusion of the proof
arithmetics.div_times_proof

Proof arithmetics.div_times_proof (which is PROVED) establishes
arithmetics.div_times

Its premises are:
arithmetics.quotient_ax
arithmetics.quotient_ax

arithmetics.quotient_ax
has already been justified

arithmetics.quotient_ax
has already been justified

arithmetics.quotient_axi
is an axiom

arithmetics.mult_ax
has already been justified

arithmetics.mult_ax
has already been justified

C.1. Clock Synchronization Condition S2 155

sums.abs_mean
is the conclusion of the proof
sums.abs_mean_proof

Proof sums.abs_mean_proof (which is PROVED) establishes
sums.abs_mean

Its premises are:
sums .mean_ax
sums .mean_ax
sums .abs_sum
arithmetics.abs_div2
arithmetics.div_mon2
absolutes.abs_ax0

sums .mean_ax
has already been justified

sums .mean_ax
has already been justified

sums.abs_sum
is the conclusion of the proof
sums.abs_sum_proof

Proof sums.abs_sum_proof (which is PROVED) establishes
sums . abs_sum

Its premises are:
sums . sum_ax
Sums . sUM_ax
sigmaprops.sigma_abs
absolutes.abs_ax0

sums . sum_ax
has already been justified

sums.sum_ax
has already been justified

sigmaprops.sigma_abs
is the conclusion of the proof
sigmaprops.sa_proof

156 Appendix C. Proof-Chain Analysis

Proof sigmaprops.sa_proof (which is PROVED) establishes
sigmaprops.sigma_abs

Its premises are:
natinduction.induction
sigmaprops.sigma_abs_basis
sigmaprops.sigma_abs_step

natinduction.induction
is the conclusion of the proof
natinduction.induction_proof

Proof natinduction.induction_proof (which is PROVED) establishes
natinduction.induction

Its premises are:
natinduction.induction_m
natprops.natpos

natinduction.induction_m
has already been justified

natprops.natpos
has already been justified

sigmaprops.sigma_abs_basis
is the conclusion of the proof
sigmaprops.sa_basis_proof

Proof sigmaprops.sa_basis_proof (which is PROVED) establishes
sigmaprops.sigma_abs_basis

Its premises are:
sigmaprops.sigma_ax
sigmaprops.sigma_ax
absolutes.abs_ax0

sigmaprops.sigma_ax
has already been justified

sigmaprops.sigma_ax
has already been justified

C.1. Clock Synchronization Condition 52

absolutes.abs_ax0
has already been justified

sigmaprops.sigma_abs_step
is the conclusion of the proof
sigmaprops.sa_step_proof

Proof sigmaprops.sa_step_proof (which is PROVED) establishes
sigmaprops.sigma_abs_step

Its premises are:
sigmaprops.sigma_ax
sigmaprops.sigma_ax
absolutes.abs_ax2
natprops.natpos
natprops.pred_lemma

sigmaprops.sigma_ax
has already been justified

sigmaprops.sigma_ax
has already been justified

absolutes.abs_ax2
is the conclusion of the proof
absolutes.abs_proof2

Proof absolutes.abs_proof2 (which is PROVED) establishes
absolutes.abs_ax2

Its premises are:
absolutes.abs_ax
absolutes.abs_ax
absolutes.abs_ax

absolutes.abs_ax
has already been justified

absolutes.abs_ax
has already been justified

absolutes.abs_ax
has already been justified

157

158 Appendix C. Proof-Chain Analysis

natprops.natpos
has already been justified

natprops.pred_lemma
has already been justified

absolutes.abs_ax0
has already been justified

arithmetics.abs_div2
is the conclusion of the proof
arithmetics.abs_div2_proof

Proof arithmetics.abs_div2_proof (which is PROVED) establishes
arithmetics.abs_div2

Its premises are:
absolutes.abs_div
absolutes.pos_abs

absolutes.abs_div
is an axiom

absolutes.pos_abs
is the conclusion of the proof
absolutes.pos_abs_proof

Proof absolutes.pos_abs_proof (which is PROVED) establishes
absolutes.pos_abs

Its premises are:
absolutes.abs_ax

absolutes.abs_ax
has already been justified

arithmetics.div_mon2
is the conclusion of the proof

arithmetics.div_mon2_proof

Proof arithmetics.div_mon2_proof (which is PROVED) establishes
arithmetics.div_mon2

Its premises are:

C.2. Clock Synchronization Condition S1 159

arithmetics.div_mon

arithmetics.div_mon
has already been justified

absolutes.abs_ax0
has already been justified

algorithm.C3
is an axiom

The proof chain is complete

The axioms and assumptions at the base are:
absolutes.abs_ax
absolutes.abs_div
algorithm.Algl
algorithm.Alg2
algorithm.Alg3
algorithm.CO_a
algorithm.CO_c
algorithm.C3
algorithm.S52_ax
arithmetics.mult_ax
arithmetics.mult_mon
arithmetics.quotient_ax
arithmetics.quotient_axi
arithmetics.quotient_ax2
natinduction.induction_m
natprops.diff_ax
natprops.natpos
natprops.pred_ax
sigmaprops.bounded_ax
sigmaprops.sigma_ax
sums.mean_ax
sums. sum_ax

C.2 Clock Synchronization Condition S1

An extract from the proof chain for Theorem_1 in the specification is given
below. The full proof chain listing contains over 3100 lines and enumerates

160 Appendix C. Proof-Chain Analysis

158 proofs and 48 axioms. As discussed in the text, the proof chain is
apparently circular. The circularity is an artifact of the inductive nature of
the proof.

Proof chain for formula Theorem_l in module algorithm

algorithm.Theorem_1
is the conclusion of the proof
main.Theorem_1_proof

Proof main.Theorem_i_proof (which is PROVED) establishes
algorithm.Theorem_1

Its premises are:
main.basis
main.ind_step
natinduction.mod_induction
clockprops.SiA_lemma

#x%%x%*%% approximately 3000 lines omitted ****xxk%%

The proof chain is complete

The axioms and assumptions at the base are:
absolutes.abs_ax
absolutes.abs_div
algorithm.AO
algorithm.A2
algorithm.A2_aux
algorithm.Algl
algorithm.Alg2
algorithm.Alg3
algorithm.CO_a
algorithm.CO_b
algorithm.CO_c
algorithm.C2
algorithm.C3
algorithm.C4

C.2. Clock Synchronization Condition S1

algorithm.C5
algorithm.C6
algorithm.SiAdef
algorithm.S1Cdef
algorithm.S2_ax
arithmetics.half_ax
arithmetics.multl
arithmetics.mult_ax
arithmetics.mult_mon
arithmetics.quotient_ax
arithmetics.quotient_ax1
arithmetics.quotient_ax2
clocks.Al
clocks.clockdef
clocks.gc_ax
clocks.rho_pos
clocks.zero_correction
functionprops.extensionality
natinduction.induction2
natinduction.induction_m
natprops.diff_ax
natprops.natpos
natprops.pred_ax
sigmaprops.bounded_ax
sigmaprops.revaigma_ax
sigmaprops.sigma_ax
sums.mean_ax
sums.sum_ax

time.C1

time.Rdef

time.Sdef

time.T_sup_ax

time.posR

time.posS

The proof chain is circular. The directly circluar formulas are:

algorithm. Theorem_1

161

Appendix D

Plain EHDM Specification
Transcripts

This appendix reproduces our specifications and proofs for the Interactive
Convergence Clock Synchronization Algorithm exactly as processed by the
EHDM system.

162

Module Page
Absolutes 164
Algorithm 191
Arithmetics 166
Clockprops 194
Clocks 189
Functionprops | 172
Juggle 212
Lemmal 197
Lemma2 198
Lemma3 200
Lemmad 201
Lemmab 203
Lemma6 205
Main 217
Natinduction | 173
Natprops 170
Sigmaprops 180
Summations 207
Sums 175
Time 187

Table D.1: Page References to raw EHDM Specification Modules

163

164 Appendix D. Plain EHDM Specification Listings

absolutes: MODULE
EXPORTING abs
THEORY
a, b, v, x, y, z: VAR number
abs: function[number -> number]
ebs_ax: AXIOM abs(a) = IF a < O THEN -a ELSE a END IF
abs_times: AXIOM abs(a*b) = abs(a) * abs(b)
abs_div: AXIOM b /= O IMPLIES abs(a / b) = abs(a) / abs(b)
abs_ax0: LEMMA O = abs(0)
abs_ax1: LEMMA O <= abs(x)
abs_ax2: LEMMA ebs(x + y) <= abs(x) + abs(y)
abs_ax2b: LEMMA abs(x + y + z) <= abs(x) + abs(y) + abs(z)

abs_ax2c: LEMMA
abs(w + x + y + z) <= abs(w) + abs{(x) + abs(y) + abs(z)

abs_ax3: LEMMA abs(-x) = abs(x)
abs_ax4: LEMMA abs(x - y) = abs(y - x)

abs_axb: LEMMA
O <= x AND x <= z AND O <= y AND y <= z IMPLIES abs(x - y) <= 2

abs_ax6: LEMMA abs(x) <= y IMPLIES -y <= x AND x <= y
abs_ax7: LEMMA abs(x) = abs(abs(x))
abs_ax8: LEMMA abs(x - y) <= abs(x) + mbs(y)

pos_abs: LEMMA O <= x IMPLIES abs(x) = x

PROOF

Absolutes 165

abs_proof0: PROVE abs_axO FROM abs_ax {a <- 0}

abs_proofl: PROVE abs_axi FROM ebs_ax {a <- x}

| abs_proof2: PROVE abs_ax2 FROM
abs_ax {a <- x + y}, sbs_ax {a <- x}, abs_ax {a <- y}

! abs_proof2b: PROVE abs_ax2b FROM
ebs_ax2 {y <~ y + z}, abs_ax2 {x <~ y, y <- z}

1 abs_proof2c: PROVE abs_ax2c FROM
| abs_ax2 {x <- w, y <- x + y + z}, abs_ax2b

abs_proof3: PROVE abs_ax3 FROM abs_ax {a <- x}, ebs_ax {a <- -x}

abs_proof4: PROVE adbs_ax4 FROM
abs_ax {a <- x - y}, abs_ax {a <- y - x}

abs_proof5: PROVE abs_axb FROM abs_ax {a <- x - y}
abs_proo?6: PROVE abs_ex6 FROM abs_ax {a <- x}
abs_proof7: PROVE abs_ax7 FROM abs_ax1, abs_ax {a <- abs(x)}

abs_proof8: PROVE abs_ax8 FROM
abs_ax {a <- x - y}, abs_ex {a <- x}, abs_ax {a <- y}

pos_abs_proof: PROVE pos_abs FROM abs_ax {a <- x}

END absolutes

166 Appendix D. Plain EHDM Specification Listings

arithmetics: MODULE
USING absolutes
EXPORTING mult, half WITH absolutes
THEORY
a, b, c,u, v, w x,y, z: VAR number
mult: function[number, number -> number]

half: function[number -> number]

quotient_ex: AXIOMy /= O IMPLIES x / y=x * (1 / y)
quotient_axl: AXIOM x /= O IMPLIES x / x = 1

quotient_ax2: AXIOM z > O IMPLIES 1 / z > O

div_times: LEMMAy /= O IMPLIES (x / §y) *z = (x x z) / ¥
div_distr: LEMMA z /= O IMPLIESx / z + 3y / z = (x +y) / z
abs_div2: LEMMA y > O IMPLIES abs(x / y) = abs(x) / y
div_mon: LEMMA x < y AND z > O IMPLIES x / z <y / z
div_mon2: LEMMA x <= y AND z > O IMPLIES x / z <=y / z
div_prod: LEMMA y > O AND a < x *# y IMPLIESa / y < x
div_prod2: LEMMA y > O AND a <= x * y IMPLIES a / y <= Xx

cancellation: LEMMA y /= O IMPLIES (y * x) / y = x

mult_ax: AXIOM mult(x, y) = x * y

multi: AXIOM x >= 0 AND y >= 0 IMPLIES mult(x, y) >= 0

Arithmetics

mult_mon: AXIOM x < y AND z > O IMPLIES mult(x, z) < mult(y, z)

mult_mon2: LEMMA x <= y AND z > O IMPLIES mult(x, z) <= mult(y, z)
cancellation_mult: LEMMA y /= O IMPLIES mult(x, y) / y = x
multO: LEMMA y = O IMPLIES mult(x, y) = O

mult_div: LEMMA y /= O IMPLIES mult(x / y, y) = x

times_half: LEMMA 2 * half(x) = x
half2: LEMMA half(x) + half(x) = x
half3: LEMMA 2 * mult(half(x), y) = mult(x, y)
mult2: LEMMA 2 * (mult(x, y)) = mult((2 * x), y)
mult3: LEMMA mult(x, y + z) = mult(x, y) + mult(x, z)
multd: LEMMA O <= x AND y <= z IMPLIES mult(x, y) <= mult(x, z)
rearrange: LEMMA
abs(x - y)

<= abs8(x - (u + v)) + ebs(y - (w + z)) + abs(u + v - (w + z))

rearrange_alt: LEMMA
abs(x - y) <= abs(x - (u + v)) + abs(u - w) + abs(y - (w + v))

PROOF

div_times_proof: PROVE div_times FROM
quotient_ax, quotient_ax {x <- x * z}

div_distr_proof: PROVE div_distr FROM
quotient_ax {y <- z},
quotient_ax {x <- y, y <- z},
quotient_ex {x <~ x + y, y <- z}

167

168 Appendix D. Plain EHDM Specification Listings

abs_div2_proof: PROVE abs_div2 FROM
abs_div {a <- x, b <- y}, pos_ebs {x <- y}

quotient_mult: LEMMA y /= O IMPLIES x / y = mult(x, 1 / y)

quotient_mult_proof: PROVE quotient_mult FROM
quotient_ax, mult_ax {y <- 1 / y}

div_mon_proof: PROVE div_mon FROM
mult_mon {z <- 1 / z},
quotient_mult {y <- z},
quotient_mult {x <- y, y <- z},
quotient_ax2
div_mon2_proof: PROVE div_mon2 FROM div_mon
div_mult: LEMMA y > O AND a < mult(x, y) IMPLIESa / y < x

div_mult_proof: PROVE div_mult FROM
div_mon {z <- y, x <- a, y <- mult(x, y)}, cancellation_mult

div_mult2: LEMMA y > O AND & <= mult(x, y) IMPLIES a / y <= x

div_mult2_proof: PROVE div_mult2 FROM
div_mon {z <- y, x <- a, y <- mult(x, ¥)}. cancellation_mult

div_prod_proof: PROVE div_prod FROM div_mult, mult_ax
div_prod2_proof: PROVE div_prod2 FROM div_mult2, mult_ax

cancellation_proof: PROVE cancellation FROM
div_times {x <- y, z <- x}, quotient_axi {x <- y)}

pult_mon2_proof: PROVE mult_mon2 FROM mult_mon

cancellation_mult_proof: PROVE cancellation_mult FROM
cancellation, mult_ax

multO_proof: PROVE multO FROM mult_ax {y <- 0}

mult_div_proof: PROVE mult_div FROM
mult_ax {x <- x / y}, div_times {z <- y}, cancellation

times_half_proof: PROVE times_half FROM
half_ax, div_times {y <- 2, z <- 2}, cancellation {y <- 2}

Arithmetics 169

half2_proof: PROVE half2 FROM times_half
half3_proof: PROVE balf3 FROM mult2 {x <- half(x)}, times_half
mult2_proof: PROVE mult2 FROM mult_ex, mult_ax {x <- 2 #* x}

nult3_proof: PROVE mult3 FROM
mult_sx, mult_ax {y <~ z}, mult_ax {y <- y + z}

mult4_proof: PROVE mult4 FROM mult3 {z <- z - y}, multl {y <- z - y}

rearrangel: LEMMA
x~y=e(x-(@+v))+ (w+rz-3)+ u+v-(v+2))

rearrangel_proof: PROVE rearrangei
rearrange2: LEMMA
abs((x - (u+¥) + (wez-3)+(u+tv-(v+2)))
<= abs(x ~ (u + v)) + abs(y - (w + 2)) + abs(u + v - (v + z))
rearrange2_proof: PROVE rearrange2 FROM
abs_ax2b {x <- x - (U+v), y<—-u+v-(w+2z) z<w+z-y}
abs_ax3 {x <- v + z - y}
rearrange_proof : PROVE rearrange FROM rearrangei, rearrange2

rearrange_alt_proof: PROVE rearrange_alt FROM resarrange {z <- v}

END arithmetics

170 Appendix D. Plain EHDM Specification Listings

natprops: MODULE
EXPORTING pred, diff
THEORY
i, m, n: VAR nat
pred: function[nat -> nat]
natpes: AXIOM n >= 0
pred_ax: AXIOM n /= O IMPLIES pred(n) =n - 1
diff: function[nat, pat -> nat]
diff_ax: AXIOM n >= m IMPLIES diff(n, m) = n - m
pred_lemma: LEMMA pred(n + 1) = n
diff_zero: LEMMA n > m IMPLIES diff(n, m) > O
pred_diff: LEMMA n > m IMPLIES pred(diff(n, m)) = diff(n, m + 1)
diff1: LEMMA n >= m IMPLIES diff(n + 1, m + 1) = diff(n, m)
diff_diff: LEMMA
n > mANDn >= 3 ANDm >= 1§
IMPLIES diff(diff(n, i), diff(m, 1)) = diff(n, m)

diff_plus: LEMMA n >= m IMPLIES m + diff(n, m) = n

diff_ineq: LEMMA
n>=mAND n >= i AND m >= i IMPLIES diff(n, i) >= diff(m, 1)

PROCF
pred_lemma_proof: PROVE pred_lemma FROM pred_ax {n <- n + 1}, natpos
diff_zero_proof: PROVE diff_zero FROM diff_ax

pred_diff_proof: PROVE pred_diff FROM
pred_ax {n <- diff(n, m)}, diff_ax, diff_ax {m <- m + 1}

diffi_proof: PROVE diffi FROM

Natprops

diff_ax, diff ex {n <-n + 1, m <- m + 1}

diff_diff_proof: PROVE aiff_diff FROM
diff_ax,
aiff_ax {m <- 1},
diff_ex {n <- m, m <- i},
aiff_ex {n <- diff(n, 1), m <- diff(m, 1)}

dif?_plus_proof: PROVE diff_plus FROM diff_ax

diff_ineq_proof: PROVE diff_ineq FROM
diff_ax {m <- i}, diff_ex {n <- m, m <- i}

END natprops

171

172 Appendix D. Plain EHDM Specification Listings

functionprops: MODULE
THEORY
F, G: VAR function[nat -> pumber]
x: VAR nat
extensionelity: AXIOM (FORALL x : F(x) = G(x)) IMPLIES F = G

END functionprops

Natinduction

natinduction: MODULE

USING natprops

THECRY
i, 10, i1, 12, i3, j, m, n: VAR nat
prop, A, B: VAR function[nat -> bool]
prop2: VAR function[nat, nat -> bool]

induction_m: AXIOM
(prop(m) AND (FORALL i : i >= m AND prop(i) IMPLIES prop(i + 1)))
IMPLIES (FORALL n : n >= m IMPLIES prop(n))

induction2: AXIOM
(FORALL 10 : prop2(io0, 0))
AND (FORALL § :
(FORALL 11 : prop2(i1, j))
IMPLIES (FORALL i2 : prop2(i2, § + 1)))
IMPLIES (FORALL 13, n : prop2(i3, n))

mod_induction_m: LEMMA
(FORALL j : j >= m AND A(j + 1) IMPLIES A(j))
AND ((A(m) IMPLIES B(m))
AND (FORALL i :
4 >=m AND A(i + 1) AND B(i) IMPLIES B{i + 1)))
IMPLIES (FORALL » : n >= m AND A(n) IMPLIES B(n))

induction: LEMMA
(prop(0) AND (FORALL i : prop(i) IMPLIES prop(i + 1)))
IMPLIES (FORALL n : prop(mn))

mod_induction: LEMMA
(FORALL j : A(j + 1) IMPLIES A(j))
AND ((A(O) IMPLIES B(0))
AND (FORALL 1 : A(i + 1) AND B(4) IMPLIES B(i + 1)))
IMPLIES (FORALL n : A(n) IMPLIES B(n))

inductioni: LEMMA
(prop(1) AND (FORALL 4 : i >= 1 AND prop(i) IMPLIES prop(i + 1)))
IMPLIES (FORALL n : n >= 1 IMPLIES prop(mn))

mod_inductioni: LEMMA

173

174 Appendix D. Plain EHDM Specification Listings

(FORALL j : § >= 1 AND A(j + 1) IMPLIES A(j))
AND ((A(1) IMPLIES B(1))
AND (FORALL i :
i >= 1 AND A(4 + 1) AND B(i) IMPLIES B(i + 1)))
IMPLIES (FORALL n : n >= 1 AND A(n) IMPLIES B(n))

PROOF

mod_m_proof: PROVE mod_induction_m {i <- i@p1, j <- i} FROM
induction_m {prop <- (LAMBDA i -> bool : A(i) IMPLIES B(1))}

induction_proof: PROVE induction {i <- i@p1} FROM
induction m {m <- 0}, natpos

mod_induction proof: PROVE mod_induction {i <- i€p1, j <- jepi} FROM
mod_induction_m {m <- 0}, natpos

inductioni_proof: PROVE inductioni {i <- i€p1} FROM
induction m {m <- 1}

mod_inductioni_proof: PROVE mod_inductioni {i <- i®p1, § <- jop1} FROM
mod_induction_m {m <- 1}

END natinduction

Sums) 175

sums : MODULE
USING arithmetics, natprops, sigmaprops
EXPORTING sum, mean
THEORY
i, j, k, n, pp, qq, rr: VAR nat
X, ¥, z: VAR number
F, G: VAR function[nat -> number]
sum: function[nat, nat, function[nat -> number] -> number]
mean: function[nat, nat, function[pnat -> number] -> number]

sum_ax: AXIOM
sun(i, j, F)
= IF i <= j + 1 THEN sigma(d, diff(j + 1, i), F) ELSE O END IF

mean_ax: AXIOM
mean(i, j, F)
= IF i <= j THEN sum(i, j, F) / (j + 1 - 1) ELSE O END IF

mean_lemma: LEMMA
mean(i, j, F)
=IF i<=}
THEN sigme(i, aif£(j + 1, 1), F) / (§ + 1 - 1)
ELSE O
END IF

split_sum: LEMMA
1<=j+1AND1<=k+ 1 AND k <= j
IMPLIES sun(i, j, F) = sun(4, k, F) + sun(k + 1, j, F)

split_mean: LEMMA
1 <= JAND1 <=k + 1 AND k <=}
IMPLIES mean(i, j, F)
= (un(i, k, F) + sum(k + &, j, F)) / (§ - 1 + 1)

sum_bound: LEMMA
i <=4 + 1 AND (FORALL pp : 1 <= pp AND PP <= } IMPLIES F(pp) < x)
IMPLIES sum(i, §, F) <= x * (§j - 1 + 1)

176 Appendix D. Plain EHDM Specification Listings

mean_bound: LEMMA
1 <= § AND (FORALL pp : 1 <= pp AND pp <= j IMPLIES F(pp) < x)
IMPLIES mean(i, j, F) < x

mean_const: LEMMA
i1 <= j IMPLIES x = mean(i, j, (LAMBDA qq -> number : X))

mean_mult: LEMMA
mean(i, j, F) * x = mean(i, j, (LAMBDA qq -> number : F(qq) * x))

mean_sum: LEMMA
mean(i, j, F) + mean(i, §, G)
= mean(4, j, (LAMBDA qq -> number : F(qq) + G(qq)))

mean_diff: LEMMA
mean(i, j, F) - mean(d, j, G)
= mean(i, j, (LAMBDA qq -> number : F(qq) - 6(qq)))

abs_mean: LEMMA
abs (mean(i, j, F)) <= mean(i, j, (LAMBDA qq -> number : abs(F(qq))))

rearrange_sum: LEMMA
i <= j IMPLIES x + mean(d, j, F) - (y + mean(4, j, G))
= mean(i, j, (LAMBDA qg -> number : x + F(qq) - (y + 6¢{qq))))

PROOF

mean_lemma_proof: PROVE mean_lemma FROM mean_ax, sum_ax

split_sum_proof: PROVE split_sum FROM
sum_ax,
sum_ax {j <- k},
sum_ax {1 <- k + 1},
split_sigma {n <- &iff(j + 1, 1), m <- Aifr(k + 1, 1), 1 < i},
diff_aiff {n<- j + 1, m <~k + 1},
diff_plus {n <- k + 1, m <- i},
aiff_ineq {n <- § + 1, m <~ k + 1}

split_mean_proof: PROVE split_mean FROM split_sum, mean_ax

gigma_bound2: LEMMA
n > 0 AND (FORALL k : 4 <= k AND k <= 1 + pred(n) IMPLIES F(k) < x)

Sums 177

IMPLIES sigma(i, n, F) < mult(x, n)

sigma_bound2_proof: PROVE sigma_bound2 {k <- k€pi1} FROM
sigma_bound, mult_ax {y <- n}

sum_bound_mod: LEMMA
1 <= j AND (FORALL pp : 1 <= pp AND pp <= j IMPLIES F(pp) < x)
IMPLIES sum(i, §, F) < mult{x, {j + 1 - 1))

sum_bound_mod_proof: PROVE sum_bound_mod {pp <- k0p2} FROM
sum_ax,
sigma_bound2 {n <- aiff(j + 1, 1), 1 <- i},
pred_adiff {n <- j + 1, m <- 1},
aiff_ax {n <- j + 1, m <- i},
diff ax {n <- § + 1, m <-4 + 1}

sum_boundl: LEMMA

1 <= j AND (FORALL pp : i <= pp AND pp <= j IMPLIES F(pp) < x)
IMPLIES sum(i, §, F) < x * (j - 1 + 1)

sum_boundi_proo?: PROVE sum_boundi {pp <- ppepi} FROM
sum_bound_mod, mult_ax {y <- j + 1 - i}

sum_boundO: LEMMA

i =13+ 1 AND (FORALL pp : i <= pp AND pp <= j IMPLIES F(pp) < x)
IMPLIES sum(i, j, F) <= mult(x, (J + 1 - 1))

sum_bound0_proof: PROVE sum_bound0 FROM
sum_ax {1 <- j + 1},
diff ax {n <- § +1, m <- j + 1},
sigme ax {i <- j + 1, n < 0},
mult0 {y <- j + 1 - 1}

sum_bound2: LEMMA

1 <=3 + 1 AND (FORALL pp : 1 <= pp AND pp <= j IMPLIES F(pp) < x)
IMPLIES sum(i, §, F) <= mult(x, (j + 1 - 1))

sum_bound2_proof: PROVE sum_bound2 {pp <- ppOp1} FROM
sum_bound_mod, sum_bound0

sum_bound_proof: PROVE sum_bound {pp <- ppOpi} FROM
sum_bound2?, mult_ax {y <- j + 1 - 1}

mean_bound_proof: PROVE mean_bound {pp <- pp@pi} FROM
sum_boundl, mean_ax, div_prod {a <- sum(i, j, F), y <- j - 1 + 1}

178 Appendix D. Plain EHDM Specification Listings

mean_const_proof: PROVE mean_const FROM
mean_lemma {F <- (LAMBDA qq -> number : x)},
sigma_const {n <- aiff(j + 1, 1), 4 <~ i},
diff_ax {n <- j + 1, m <- 1},
cancellation {y <- j + 1 - i}

sum_mult: LEMMA
sum(i, j, F) * x = sum(4, j, (LAMBDA qq -> number : F(qq) * x))

sum_mult_proof: PROVE sum_mult FROM
sum_ax,
sun_ax {F <- (LAMBDA qq -> number : F(qq) * x)},
mod_sigma_mult {i <- i, n <- aifr(j + 1, 1)}

mean_mult_proof: PROVE mean_mult FROM
mean_ax,
mean_ax {F <- (LAMBDA qq -> number : F(qq) * x)},
sum_mult,
div_times {x <- sum(4, j, F€p3), y <- § + 1 - 1, z <- x}

mean_sum_proof : PROVE mean_sum FROM
mean_lemma {F <- (LAMBDA qq -> number : F(qq) + G(qq))},
mean_lemnma,
mean_lemma {F <- G},
sigma_sum {n <- diff(j + 1, 1), 1 <- 1},
div_distr
{x <- sigma(i, aif?(j + 1, 1), F),
y <- sigma(i, diff(j + 1, 1), G),
z <-j+1-1}

mean_diff _proof: PROVE mean_diff FROM
mean_mult {F <- G, x <~ -1},
mean_sunm {G <- (LAMBDA qq -> number : G(qq) * -1)}

abs_sum: LEMMA
abs(sum(i, j, F)) <= sum(i, j, (LAMBDA qq -> number : abs(F(qq))))

Sums 179

abs_sum_proof: PROVE abs_sum FROM
sum_ax,
sun_ax {F <- (LAMBDA qq -> number : abs(F(qq)))},
sigma_abs {n <- diff(j + 1, 1), 1 <~ i},
abs_ax0

abs_mean_proof: PROVE abs_mean FROM

mean_ax,

mean_ax {F <- (LAMBDA qq -> number : aba(F(qq)))},
abs_sum,

ebs_div2 {x <- sum(i, j, F), y <- § + 1 - i},
div_mon2

{x <- abs(sum(i, j, F)),

y <- sum(i, j, FOp2),

z <-j+1 -1},
abs_ax0

rearrange_sub: LEMMA
i <= j IMPLIES x + mean(i, j, F)
= mean(i, j, (LAMBDA qq -> number : x + F(qq)))

rearrange_sub_proo?: PROVE rearrange_sub FROM
mean_const, mean_sum {G <- (LAMBDA qq -> number : x)}

rearrange_sum_proof: PROVE rearrange_sum FROM
rearrange_sub,
rearrange_sub {x <- y, F <- G},
mean_diff
{F <~ (LAMBDA pp -> number : x + Foc(pp)),
G <~ (LAMBDA pp -> number : y + Gec{pp))}

END sums

180 Appendix D. Plain EHDM Specification Listings

sigmaprops: MODULE
USING arithmetics, natprops, functionprops, natinduction
EXPORTING sigma
THEORY
i, it, 12, j, k, 1: VAR nat
F, G: VAR function{nat -> number]
n, m, mm, nn, qq: VAR nat
x, y: VAR number
sigma: function[nat, nat, function[nat -> number] -> number]
sigma_ax: AXIOM
sigma(i, n, F)
=JFn=0
THEN O
ELSE F(i + pred(n)) + sigma(i, pred(n), F)
END IF

sigma_const: LEMMA sigma(i, n, (LAMBDA qq -> number : x)) =n * x

sigma_mult: LEMMA
sigma(i, n, (LAMBDA qq -> number : x * F(qq))) = x * sigma(i, n, F)

mod_sigma_mult: LEMMA
sigma(i, n, (LAMBDA qq -> number : F(qq) * x)) = sigma(i, n, F) * x

sigma_sum: LEMMA
sigma(i, n, F) + sigma(i, n, G)
= gigma(i, n, (LAMBDA qq -> number : F(qq) + G(qq)))

split_sigma: LEMMA
n >= m IMPLIES sigma(i, n, F)
= gigma(i, m, F) + sigma(4i + m, diff(n, m), F)

sigma_abs: LEMMA
ebs(sigma(i, n, F))
<= pigma(i, n, (LAMBDA gq -> number : abs(F(qq))))

Sigmaprops 181

sigma_bound: LEMMA

n > 0 AND (FORALL k : i <= k AND k <= i + pred(n) IMPLIES F(k) < x)
IMPLIES sigma(i, n, F) < n * x

(x x)
bounded: function[nat, nat, function[nat -> number], number -> bool]

bounded_ax: AXIOM
n > 0 IMPLIES (bounded(i, n, F, x)
= (FORALL kX : {1 <=k AND k <= 4 + pred(n) IMPLIES F(k) < x))

reveigme: function[nat, net, function[nat -> number] -> number]

reveigma_ax: AXIOM
revsigma(i, n, F)
= IF n = O THEN O ELSE F(i) + revsigma(i + 1, pred(n), F) END IF

sigma_rev: LEMMA sigma(i, n, F) = revsigma(i, n, F)

PROOF

sigma_const_basis: LEMMA sigma(i, O, (LAMBDA qq -> number : x)) = O

sc_basis_proof: PROVE sigma_const_basis FROM
sigma_ax {n <- 0, F <- (LAMBDA qq -> number : x)}

sigma_const_step: LEMMA
sigma(i, n, (LAMBDA qq -> number : x)) = n * x
IMPLIES sigma(i, n + 1, (LAMBDA qq -> number : x)) = (n + 1) * x

sc_step_proof: PROVE sigma_const_step FROM
sigma_ax {n <- n + 1, F <- (LAMBDA qq -> number : x)}, pred_lemma

sc_proof: PROVE sigma_const FROM
induction
{prop <- (LAMBDA nn -> bool :
sigma(i, nn, (LAMBDA qq -> number : x)) = mn * x)},
sigma_const_basis,
sigma_const_step {n <- i¢p1}

sigma_mult_basis: LEMMA
sigma(i, O, (LAMBDA qq -> number : x * F(qq))) = x * sigma(i, O, F)

sm_basis_proof: PROVE sigma_mult_basis FROM

182 Appendix D. Plain EHDM Specification Listings

sigma_ax {n <- 0},
sigma_ex {n <- 0, F <- (LAMBDA qq -> number : x * F(qq))}

sigma_mult_step: LEMMA i
sigma(i, n, (LAMBDA qq -> number : x * F(qq))) = x * sigma(i, n, F)
IMPLIES sigme(i, n + 1, (LAMBDA qq -> number : x * F(qq)))
= x % pigna(i, n + 1, F)

sm_step_proof: PROVE sigma_mult_step FROM
sigma_ax {n <- n + 1, F <~ (LAMBDA qq -> number : x * F(qq))},
sigma_ax {n <- n + 1},
pred_lemma

sm_proof: PROVE sigma_mult FROM
induction
{prop <- (LAMBDA nn -> bool :
sigma(i, nn, (LAMBDA qq -> number : x * F(qq)))
= x % sigma(i, nn, F))},
sigma_mult_basis,
sigma_mult_step {n <- i@p1}

mod_sigme_mult_proof: PROVE mod_sigma_mult FROM
sigme_mult,
extensionality
{F <- (LAMBDA qq -> number : x * F(qq)),
G <- (LAMBDA qq -> number : F(qq) * x)}

sigma_sum_basis: LEMMA
sigma(i, 0, F) + sigma(i, 0, G)
= gigma(i, 0, (LAMBDA qq -> number : F(qq) + G(qq)))

88_basis_proof: PROVE sigma_sum basis FROM
sigma_ax {n <- 0, F <- (LAMBDA qq -> number : F(qq) + G{qq))},
sigma_ax {n <- 0, F <- (LAMBDA qq -> number : G(qq))},
sigma_ax {n <- O}

sigma_sum_step: LEMMA
sigma(i, n, F) + sigma(i, n, G)
= sigma(i, n, (LAMBDA qq -> number : F(qq) + G(qq)))
IMPLIES sigma{(i, n + 1, F) + sigma(i, n + 1, G)
= sigma(i, n + 1, (LAMBDA qq -> number : F(gqq) + G(qq)))

ss_step_proof: PROVE sigma_sum_step FROM

Sigmaprops 183

sigma_ex {n <~ n + 1, F <- (LAMBDA qq -> number : F(qq) + G(qq))},
sigma_ax {n <- n + 1, F <~ (LAMBDA qq -> number : G(qq))},
sigma_ax {n <- n + 1},

pred_lemna

88_proof: PROVE sigma_sum FROM
induction
{prop <- (LAMBDA nn -> bool :
sigma(i, nn, F) + sigma(i, nn, G)
= gigma(i, nn, (LAMBDA qq -> number : F(qqg) + G(qq))))}.
sigma_sum_basis,
sigma_sum_step {n <- i0pi1}

split_sigma_basis: LEMMA
signa(i, n, F) = sigma(i, O, F) + sigma(i, diff(n, 0), F)

split_basis_proof: PROVE split_sigma_besis FROM
sigma_ax, sigma_ex {n <- 0}, diff_ax {m <- 0}, natpos

split_sigma_step: LEMMA
(n >= m IMPLIES sigma(i, n, F)
= gigna(i, m, F) + sigma(i + m, diff(n, m), F))
IMPLIES (n >=m + 1
IMPLIES sigma(i, n, F)
= gigma(i, m + 1, F) + sigma(i + m + 1, diff(n, = + 1), F))

split_step_proof: PROVE split_sigme_step FROM
sigma_ax {n <- m + 1},
sigma _rev {i <- 1 + m + 1, n <~ diff(n, = + 1)},
reveigme ax {i <- i + m, n <- diff(n, m)},
signa_rev {i <- 1 + m, n <- diff(z, n)},
pred_lemma {n <- m},
pred_dif?f,
diff_zero,
natpos {n <- m}

split_proof: PROVE split_sigma FROM

induction
{n <- m,
prop <- (LAMBDA nn -> bool :
n >=nn

IMPLIES sigma(i, n, F)

= pigma(i, nn, F) + sigma(i + nn, diff(n, nn), F))},
split_sigma basis,
split_sigme_step {m <- 10Opi1}

184 Appendix D. Plain EHDM Specification Listings

sigma_abs_basis: LEMMA
abs(sigma(i, 0, F))
<= gigma(i, 0, (LAMBDA qq -> number : abs{F(qq))))

sa_basis_proof: PROVE sigma_abs_basis FROM
signa_ax {n <- 0},
sigme_ex {n <- O, F <- (LAMBDA qq -> number : abs(F(qq)))},
abs_ax0

sigma_abs_step: LEMMA
abs(sigma(i, n, F))
<= gigma(i, n, (LAMBDA qq -> number : abs(F(qq))))
IMPLIES abs(sigma(i, n + 1, F))
<= gigma(i, n + 1, (LAMBDA qq -> number : abs(F(qq))))

sa_step_proof: PROVE sigma_abs_step FROM
sigma_ax {n <- n + 1},
signa_ax {n <- n + 1, F <- (LAMBDA gqq -> number : abs(F(qq)))}.
abs_ax2 {x <- F(1 + n), y <- sigme(i, n, F)},
natpos,
pred_lemma

sa_proof: PROVE sigma_abs FROM
induction
{prop <- (LAMBDA mnn -> bool :
abs(sigma(i, nn, F))
<= sigma(i, nn, (LAMBDA qq -> number : abs{(F(qq)))))}.
sigma_abs_basis,
sigma_abs_step {n <- i0p1}

bounded_lemma: LEMMA
n > 0 AND bounded(i, n + 1, F, x) IMPLIES bounded(i, n, F, x)

bounded_proof: PROVE bounded_lemma FROM
bounded_ax {k <- kOpi},
bounded_ax {n <~ n + 1, k <- kOp1},
pred_lemma,
pred_ax

sigma_bound basis: LEMMA
bounded(i, 1, F, x) IMPLIES sigma(i, 1, F) < x

Sigmaprops 185

sb_basis_proof: PROVE sigma_bound_basis FROM
bounded_ax {n <- 1, k <- i},
sigma_ax {n <- 0},
sigma_ax {n <- 1},
pred_ax {n <~ 1}

| alt_sigme_bound_step: LEMMA
n > O AND bounded(i, n + 1, F, x) AND sigma(i, n, F) < mult(n, x)
IMPLIES sigma(i, n + 1, F) < x + mult(n, x)

| alt_sb_step_proof: PROVE alt_sigme_bound_step FROM
bounded_ax {n <- n + 1, k <- 1 + n},

sigma_sx {n <- n + 1},

pred_lemma,

natpos

sigma_bound_step: LEMMA
n > 0 AND bounded(i, n + 1, F, x) AND sigma(i, n, F) < n * x
IMPLIES sigme(i, n + 1, F) < (n + 1) * x

sb_step_proof: PROVE sigma_bound_step FROM
alt_sigma_bound_step, mult_ax {x <- n, y <- x}

8b: LEMMA n > O AND bounded(i, n, F, x) IMPLIES sigma(i, n, F) < n * x

8b_proof: PROVE sb FROM
mod_inductiont
{A <- (LAMBDA mn -> bool : bounded(i, mn, F, x)),
B <- (LAMBDA mm -> bool : sigma(i, mm, F) < mm * x)},
bounded_lemma {n <- jepi},
sigma_bound basis,
sigme_bound_step {n <- iGpi1}

sigma_bound_proof: PROVE sigma_bound {k <- k€p2} FROM sb, bounded_ax

sigmal: LEMMA gigma(i, n + 1, F) = F(1) + sigmna(i + §, n, F)
i sigmal_basis: LEMMA sigma(i, 1, F) = F(1) + sigma(i + 1, O, F)

81b_proof: PROVE sigmal_basis FROM
signe_ax {n <- 0},
sigma_ax {i <- 1 + 1, n <- 0},
sigma_ax {n <- 1},
pred_ax {n <- 1}

186 Appendix D. Plain EHDM Specification Listings

sigmai_step: LEMMA
signma(i, n + 1, F) = F(4) + signa(i + 1, n, F)
IMPLIES sigma(i, n + 2, F) = F(1) + signa{(i + 1, n + 1, F)

sls_proof: PROVE sigmal_step FROM
sigma_ax {1 <- 1 + 1, n <- n + 1},
sigma_ax {n <- n + 2},
pred_lemma,
pred_lemma {n <- n + 1},
natpos

sigmal_proof: PROVE sigmail FROM
induction
{prop <- (LAMBDA nn -> bool :
sigma(i, nn + 1, F) = F(1) + sigma(i + 1, nmn, F))},
sigmal basis,
signal_step {n <- i0pi1}

sigma_rev_basis: LEMMA sigma(i, 0, F) = revsigma(i, 0, F)

srb_proof: PROVE sigma_rev_basis FROM
sigme_ax {n <- 0}, revsigma_ax {n <- 0}

sigma_rev_step: LEMMA
(FORALL i1 : sigma(il, n, F) = revsigma(il, n, F))
IMPLIES (FORALL 12 : sigma(i2, n + 1, F) = revsigma(i2, n + 1, F))

srp_proof: PROVE sigma_rev_step {i1 <- 12 + 1} FROM
revsigme_ax {i <- 12, n <- n + 1},
sigmal {i <- 12},
pred_lemma,
natpos

sigma_rev_proof: PROVE sigma_rev FROM

induction2

{11 <- iiep3,

i3 <- 1,

prop2 <- (LAMBDA i, mn -> bool :

sigma(i, on, F) = revsigma(i, nn, F))},

sigma_rev_basis {i <- 100pi},
sigma_rev_step {12 <- 120p1, n <- jop1}

END sigmaprops

Time 187

time: MODULE

USING arithmetics

EXPORTING clocktime, realtime, period, R, §, T_ZERO, T_sup, in_R_intervel,
in_S_interval WITH arithmetics

THEORY
clocktime: TYPE IS number
realtime: TYPE IS number
period: TYPE IS nat
R, 5: clocktime(* Synchronizing periods *)
posR: AXIOM O < R
posS: AXIOM O < 8
Ci: AXIODMR >= 3 * §
SinR: LEMMA § < R
i: VAR period
T_sup: function[period -> clocktime]
T_ZERC: clocktime
T_sup_mx: AXIOM T_sup(i) = T_ZERO + 1 * R
T_next: LEMMA T_sup(i+1) = T_sup(i) + R
T, Ti, T2, PI: VAR clocktime
in_R_interval: function{clocktime, period -> boolean]

Rdef: AXIOM in_R_interval(T, i)
= (EXISTS PI : 0 <=PI ANDPI <=R AND T = T_sup(i) + PI)

Ti_in_R: LEMMA in_R_interval(T_sup(i), 1)

in_S_interval: function[clocktime, period -> boolean]

188 Appendix D. Plain EHDM Specification Listings

Sdef: AXIOM in_S_interval(T, i)
= (EXISTS PI : O <= PI AND PI <= § AND T= T_sup(i) +R-8+PI)

inRS: LEMMA in_§_interval(T, 1) IMPLIES in_R_interval(T, i)
Ti_in_§: LEMMA in_S_interval(T_sup(i + 1), 1)

in_S_lemma: LEMMA
in_S_interval(Ti, i) AND in_S_interval(T2, i) IMPLIES abs(T1 - T2) <= §

PROOF
SinR_proof: PROVE §inR FROM C1, posS, posR
Ti_proof: PROVE Ti_in R FROM Rdef {T <~ T_sup(i), PI <- 0}, abs_ax0, posR
inRS_proof: PROVE inRS FROM Sdef, Rdef {PI <- R - § + PICGp1}, SinR
T_next_proof: prove T_next from T_sup_ax, T_sup_ax{i<-i+1}

Ti_in_S_proof: PROVE Ti_in_§ FROM Sdef{?l(-s, T<~
T_sup(i+1)}, posS, T_next

in_S_proof: PROVE in_S5_lemma FROM
Sdet {T <- T1}, Sdef {T <- T2}, abs_axb {x <- PIep1, y <- PICp2, z <- s}

END time

Clocks

clocks: MODULE
USING time

EXPORTING proc, clock, rho, Corr, adjusted, rt, nonfaulty
WITH time

THEORY
proc: TYPE IS nat
p: VAR proc
clock: function[proc, clocktime -> realtime]
Corr: function[proc, period -> clocktime]
zero_correction: AXIOM Corr(p, 0) = O
i: VAR period
T, TO, T1, T2, TN: VAR clocktime

adjusted: function[proc, period, clocktime -> clocktime] =
(LAMBDA p, i, T -> clocktime : T + Corr(p, 1))

rt: function[proc, period, clocktime -> realtime]
clockdef: AXIOM rt(p, i, T) = clock(p, sdjusted(p, i, T))
goodclock: function[proc, clocktime, clocktime -> bool]
rho: number
rho_pos: AXIOM half(rho) >= O
rho_small: AXIOM half(rho) < 1
ge_ax: AXIOM
goodclock(p, TO, TN)
= (FORALL Ti, T2 :
TO <= T1 AND TO <= T2 AND T1 <= TN AND T2 <= TN

IMPLIES abs(clock(p, T1) - clock(p, T2) - (T1 - T2))
< mult(half(rho), abs(Ti - T2)))

189

190 Appendix D. Plain EHDM Specification Listings

monotonicity: THEOREM
goodclock(p, TO, TN)
AND TO <= T1 AND TO <= T2 AND T1 <= TN AND T2 <= TN
IMPLIES (T1 > T2 IMPLIES clock(p, T1) > clock(p, T2))

nonfaulty: function[proc, period -> boolean]

Al: AXIOM nonfaulty(p, i)
= goodclock(p,
adjusted(p, 0, T_sup(0)),
adjusted(p, 1, T_sup{i + 1)))

PROOF
X, y: VAR number

diminish: LEMMA x > O IMPLIES mult (half(rho), x) <= x
]
diminish_proof: PROVE diminish FROM
mult_mon {x <- half(rho), y <- 1, z <- x},
rho_small,
mult_ax {x <- 1, y <- x}

monoproof : PROVE monotonicity FROM
ge_ax,
diminish {x <- abs(T1 - T2)},
abs_ax {a <- clock(p, T1) - clock(p, T2) - (T1 - T2)},
ebs_ax {a <- T1 - T2}

END clocks

Algorithm 191

algorithm: MODULE
USING clocks, sums

EXPORTING Sigma, Delta, Deltal, Delta2, D2bar, skew, S1A, S1C, §2,
delta, eps, delta0, n, m WITH clocks

THEORY
T, TO, Ti, X, PI: VAR clocktime
i: VAR pericd
P. qQ. r: VAR proc
Deltal: function[proc, period -> clocktime]
Delta2, D2bar: function[proc, proc, period -> clocktime]
m, n: proc
eps, deltal, delta: realtime
Sigma, Delta: clocktime
CO_a: AXIOMn > O
CO_b: AXIODM O <=m ANDm < n
CO_c: AXIOM Delta > O
C2: AXIOM § >= Sigma
C3: AXIOM Sigma >= Delta
C4: AXIOM Delta >= delta + eps + mult(half(rho), S)
C6: AXIOM delta >= deltal + rho * R
C6: AXIOM delta
>= 2 % (eps + vho * §) + 2 * m * Delta / (n - m)
+n*rho xR/ (n-m

+ rho * Delta
+ n * rho * Sigme / (n - m)

192 Appendix D. Plain EHDM Specification Listings

C2and3: LEMMA Delta <= §
Algi: AXIOM Corr(p, i + 1) = Corr(p, i) + Deltai(p, i)

Alg2: AXIOM
Deltai(p, i) = mean(1, n, (LAMBDA r -> number : D2bar(r, p, 1)))

Alg3: AXIOM
D2var(r, p, 1)
= IF r /= p AND abs(Delta2(r, p, 1)) < Delta
THEN Delta2(r, p, i)
ELSE O
END IF

clock_prop: LEMMA rt(p, 1 + 1, T) = rt(p, 1, T + Deltai(p, 1))
D2ber_prop: LEMMA abs(D2bar(p, q, i)) < Delta

skew: function[proc, proc, clocktime, period -> clocktime] =
(LAMBDA p, q, T, 1 -> clocktime : aba(rt(p, 1, T) - rt(q, i, T)))

S1A: function[period -> bool]
S1Adef: AXIOM
S1A(1)
= (FORALLr : (m + 1 <= r AND r <= n) IMPLIES nonfaulty(r, 1))
51C: function[proc, proc, period -> bool]
S1Cdef: AXIOM
sic(p, q, 1)
= (nonfaulty(p, 1) AND nonfaulty(q, i) AND in_R_interval(T, 1)
IMPLIES skew(p, q, T, 1) <= delta)
§1C_lemma: LEMMA S1C(p, q, i) IMPLIES SiC(q, p, i)
52: function[proc, period -> bool]
52_ax: AXIOM S2(p, i) = (abs(Corr(p, i + 1) - Corr(p, 1)) < Sigma)
AO: AXIOM skew(p, q, T_sup(0), 0) < deltal
A2: AXIOM nonfaulty(p, i)
AND nonfaulty(q, i) AND 51C(p, q, 1) AND §2(p, 1)
IMPLIES abs(Delta2(q, p, 1)) <= §

AND (EXISTS TO :
in_S_interval(TO, 1)

Algorithm

AND aba(rt(p. 1, TO + Delta2(q, p, 1)) - rt{q, i, TO))
< eps)

A2_aux: AXIOM Delta2(p, p, 1) =0
Theorem_1: THEOREM S1A(i) IMPLIES §1C(p, q, 1)
Theorem_2: THEOREM S2(p, 1)
PROOF
C2and3_proof: PROVE C2and3 FROM C2, C3

clock_proof: PROVE clock_prop FROM
clockdef {T <- T + Deltei(p, 1)}, clockdef {i <- i + 1}, Algi

D2bar_prop_proof: PROVE D2bar_prop FROM
Al1g3 {r <- p, p <- q}, CO_c, abs_ax0

81C_lemma_proof: PROVE S1C_lemma FROM
5i1Cdet,
81cdet {p <- q, q <- p}.
abs_ax4 {x <- rt(q, i, Tepl)., y <- rt(p, 1, Top1)}

Theorem_2_proof: PROVE Theorem_2 FROM

52_ex, '
Algi,
D2bar_prop {p <- PpPep7. q <- p}.
Alg2,
CO_a,
CO_c,
mean_bound

{i <~ 1,

i< =,

x <- Delta,

F <- (LAMBDA r -> number : abs(D2bar(r, p, 1)))},
abs_mean

{1 <1,

j < n,

F <- (LAMBDA r -> number : D2bar(r, p, 1))},
C3

END algorithm

193

194 Appendix D. Plain EHDM Specification Listings

clockprops: MODULE
USING clocks, algorithm, natinduction
THEORY

T, TO, T1, T2, TN, PI: VAR clocktime

P, q: VAR proc

i: VAR period

upper_bound: LEMMA

in_S_interval(T, i) AND abs(PI) <= R - §
IMPLIES adjusted(p, i, T + PI) <= edjusted(p, 1 + 1, T_sup(i + 2))
lower_bound: LEMMA
0 <= PI IMPLIES adjusted(p, O, T_sup(0))
<= adjusted(p, i, T_sup(i) + PI)
lower_bound2: LEMMA
in_S_interval(T, i) AND abs(PI) <= R - §

IMPLIES adjusted(p, O, T_sup(0)) <= adjusted(p, i, T + PI)
adj_always_pos: LEMMA adjusted(p, i1, T_sup(i)) >= T_ZERD
nonfx: LEMMA nonfaulty(p, i + 1) IMPLIES nonfaulty(p, i)
S1A_lemma: LEMMA S1A(i + 1) IMPLIES S1A(1)

PROOF
12R: LEMMA T_sup(i + 2) = T_sup(i) + 2 * R
12R_proof: PROVE i2R FROM T_sup_ax {i <- i + 2}, T_sup_ax
upper_bound_proof : PROVE upper_bound FROM
Sdef,
i2R,
abs_ax6 {x <- PI, y <- R - S},
§2_ax, \
Theorem_2,

abs_ax6 {x <- Corr(p, 1 + 1) - Corr(p, i), y <- Sigma},
C2

Clockprops 195

basis: LEMMA adjusted(p, O, T_sup(0)) >= T_ZERD
basis_proof: PROVE basis FROM zero_correction, T_sup_ax {i <- 0}
small_shift: LEMMA Corr(p, i + 1) - Corr(p, i) >= -R

small_shift_proof: PROVE smell_shift FROM
52_ax,
Theorem_2,
abs_ax {a <- Corr(p, i + 1) - Corr(p, 1)},
c2,
SinR

inductive_step: LEMMA
adjusted(p, i, T_sup(i)) >= T_ZERO
IMPLIES adjusted(p, 1 + 1, T_sup(i + 1)) >= T_ZERO

ind_proof: PROVE inductive_step FROM small_shift, T_next

adj_pos_proof: PROVE adj_always_pos FROM
induction
{n <- 1,
prop <- (LAMBDA i -> bool : adjusted(p, i, T_sup(i)) >= T_ZERD)},
basis,
inductive_step {1 <- iepi}

lower_bound_proof: PROVE lower_bound FROM
adj_always_pos, T_sup_ax {i <- 0}, zero_correction

lower_bound2_proof: PROVE lower_bound2 FROM
lower_bound {PI <- T - T_sup(i) + PICc},
Sdef,
abs_ax {a <- PI},
8inR

ge_prop: LEMMA
goodclock(p, TO, TN) AND TO <= T AND T <= TN
IMPLIES goodclock(p, TO, T)

ge_proof:. PROVE gc_prop FROM
ge_ex {T1 <- T10p2, T2 <- T20p2}, ge_ax {TN <- T}

bounds: LEMMA
adjusted(p, O, T_sup(0)) <= adjusted(p, i, T_sup(i + 1))
AND adjusted(p, i, T_sup(i + 1))
<= adjusted(p, 1 + 1, T_sup(i + 2))

196 Appendix D. Plain EHDM Specification Listings .

bounds_proof: PROVE bounds FROM
upper_bound {PI <- 0, T <- T_sup(i + 1)},
lower_bound2 {PI <- O, T <- T_sup(i + 1)},
abs_ax0,
SinR,
Ti_in S

nonfx_proof: PROVE nonfx FROM

At {1 <- 1+ 1},

Al,

ge_prop
{TO <~ adjusted(p, 0, T_sup(0)),
TN <- edjusted(p, 1 + 1, T_sup(i + 2)),
T <- adjusted(p, 1, T_sup(i + 1))},

bounds

S1A_lemma_proof: PROVE S1A_lemma FROM
S1Adet,
SiAdef {i <- 1 + 1, r <- ropi},
nonfx {p <- rept}

END clockprops

Lemmal 197

lemmai: MODULE
USING algorithm, lemma2
THEORY

P. q: VAR proc

1: VAR period

lemmaidef: LEMMA
sic(p. q. 1)
AND 82(p, 1) AND nonfaulty(p, i + 1) AND nonfaulty(q, i + 1)
IMPLIES abs(Delta2(q, p, 1)) < Delta

PROOF

lemmai_proof: PROVE lemmaldef FROM
A2,
lemma2c {PI <- Delta2(q, p, i), T <- TO¢pi1},
sicdes {T <- TOOp1},
abs_axd {x <- rt(p, i, TOOp1), y <- rt(q, i, TOGp1)},
abs_ax4
{x <- rt(p, i, ToCp: + PIEp2),
y <~ rt(p, 1, ToCp1) + PIEp2},
abs_ax2b {x <- yOpb - xOpb, y <- y€p4 - xCpd, z <- x0pb - yepd},
nonfx,
nontx {p <- g},
inRS {T <- TOGpi1},
mult4 {x <~ half(rho), y <- abs(Delta2(q, p, 1)), z <- §},
rho_pos,
C4

END lemmal

198 Appendix D. Plain EHDM Specification Listings

lemma2: MODULE
USING algorithm, clockprops
THEORY

P. Q. r: VAR proc

i: VAR period

T: VAR clocktime

PI, PHI: VAR realtime

lemma2def: LEMMA
nonfaulty(p, i + 1)
AND adjusted(p, 1, T) <= adjusted(p, 1 + 1, T_sup(i + 2))
AND adjusted(p, O, T_sup(0)) <= adjusted(p, 1, T)
AND adjusted(p, i, T + PI)
<= adjusted(p, 1 + 1, T_sup(i + 2))
AKD adjusted(p, O, T_sup(0)) <= adjusted(p, i, T + PI)
IMPLIES ebs(rt(p, 1, T + PI) - (rt(p, 1, T) + PI))
< mult(half (rho), abs(PI))

lemma2a: LEMMA
nonfaulty(p, 1 + 1)
AND abs(PI + PHI) <=R - §
AND abs(PHI) <= R - 58 AND in_S_interval(T, 1)
IMPLIES abs(rt(p, i, T + PHI + PI) - (rt(p, i, T + PHI) + PI))
< mult(balf(rho), abs(PI))

lemma2b: LEMMA
nonfaulty(p, 1 + 1)
AND abs(PHI) <= S AND abs(PI) <= § AND in_S_interval(T, i)
IMPLIES abs(rt(p, i, T + PHI + PI) - (rt(p, 1, T + PHI) + PI))
< mult(half (rho), abs(PI))

lemma2c: LEMMA
nonfaulty(p, 1 + 1) AND ebs(PI) <= S AND in_S_interval(T, 1)
IMPLIES abs(rt(p, i, T + PI) - (rt(p, i, T) + PI))
< mult(half(rho), ebs(PI))

lemma2d: LEMMA
nonfaulty(p, 1) AND O <= PI AND PI <= R
IMPLIES abs(rt(p, i, T_sup(i) + PI) - (rt(p, 1, T_sup(i)) + PI))

Lemma2

< mult (half (rho), PI)
PROOF

lemma2_proof: PROVE lemma2def FROM
AL {1 <- 1+ 1},
ge_ex
{10 <- adjusted(p, 0, T_sup(0)),
TN <- adjusted(p, 1 + 1, T_sup(i + 2)),
T2 <- adjusted(p, 1, T),
T1 <- adjusted(p, 1, T + PI)},
clockdef,
clockdet {T <- T + PI}

lemma2a_proof: PROVE lemma2a FROM
lemma2det {T <- T + PHI},
upper_bound {PI <- PHI + PI},
lower_bound2 {PI <- PHI + PI},
upper_bound {PI <- PHI},
lower_bound2 {PI <- PHI}

lemma2b_proof: PROVE lemma2b FROM
lemma2a,
ebs_ax1 {x <- PI},
abs_ax2 {x <- PHI, y <- PI},
C1,
posS,
posR

lemma2c_proof: PROVE lemma2c FROM lemma2b {PEI <- O}, abs_ax0, posS

lemma2d_proof: PROVE lemma2d FROM

AL,

ge_ax
{T0 <- adjusted(p, 0, T_sup(0)),
TN <- adjusted(p, i, T_sup(d + 1)),
Ti <- adjusted(p, i, T_sup(i) + PI),
T2 <- adjusted(p, 1, T_sup(i))},

clockdef {T <- T_sup(1)},

clockde? {T <- T_sup(i) + PI},

posR,

pos_abs {x <- PI},

lower_bound,

lower_bound {PI <- 0},

T_next

END lemma2

199

200 Appendix D. Plain EHDM Specification Listings

lemma3: MODULE
USING algorithm, lemma2
THEORY
P. q: VAR proc
i1: VAR period
T, TO, Ti, T2: VAR clocktime
PI: VAR realtime

lemma3def: LEMMA
sic(p. q. 1)
AND S2(p, 1)
AND nonfaulty(p, 1 + 1)
AND nonfaulty(q, 1 + 1) AND in_S_interval(T, i)
IMPLIES abs(rt(p, i, T + Delta2(q, p, 1)) - rt(q, 1, T))
< eps + rho * 8

PROOF

lemma3_proof: PROVE lemma3def FROM
A2,
rearrange_alt
{x <~ rt(p, 1, T + Delta2(q, p, 1)),
y <-rt(q, 4, T),
u <- rt(p, 1, ToCpi + Delta2(q, p, 1)),
v <- T - TO®p1,
v <- rt(q, 1, TOGp1)},
lemma2b {T <- TOGpi, PHI <- Delta2(q, p, i), PI <- T - TOGpi},
lemma2c {p <- q, T <- TOGpi, PI <~ T - TOGp1},
nonfx,
nonfx {p <- q},
multd {x <- half(rho), y <- abs(T - TOCp1), z <- §},
rho_pos,
half3 {x <- rho, y <- B},
mult_ax {x <- rho, y <- S},
in_S_lemma {T1 <- T, T2 <- TOCp1}

END lemma3

Lemma4

lemma4: MODULE
USING algorithm, lemmal, lemma2, lemma3
THEORY

P, 9. r: VAR proc

i: VAR period

T: VAR clocktime

lemma4ddef: LEMMA
sic(q, r, 1)
AND 81C(p, q, 1)
AND s1C(p, r, 1)
AND S52(p, 1)
AND 52(q, 1)
AND 82(r, 1)
AND ponfaulty(p, 1 + 1)
ARD nonfaulty(q, i + 1)
AND nonfaulty(r, i + 1) AND in_S_interval(T, 1)
IMPLIES abs(rt(p, i, T) + D2bar(r, p, 1)
- (rt(q, 1, T) + D2bar(r, q, 1i)))
< 2 x (eps + rho * § + mult(half(rho), Delta))

PROOF
TO, T1, T2: VAR clocktime
PI: VAR realtime
u, v, v, x, y, z: VAR number
Tearrangel: LEMMA x -y = (u-y) - (v-x) + (v-w) - (u-w)
rearrangel_proof: PROVE rearrangel
rearrange2: LEMMA
abs((u-y) -(v-x)+(v-w)-(u-w)
<= abs(u - y) + abe(v - x) + abs(v - w) + aba(u - w)
rearrange2_ proof: PROVE rearrange2 FROM

abs_ax2c {w <- (u-y), x<- (x-v), y<- (v -w), z < (v -u)},
abs_ax3 {x <- (v - x)},

201

202 Appendix D. Plain EHDM Specification Listings

abs_ax8 {x <- (u - w)}

rearrange3: LEMMA
abs(x - y) <= abs(u - y) + abs(v - x) + abs(v - w) + abs(u - w)

rearrange3_proof: PROVE rearrange3 FROM rearrangel, rearrange2

sublemmai: LEMMA
sic(p. r, 1)
AND 82(p, 1) AND nonfaulty(p, 1 + 1) AND nonfaulty(r, i + 1)
IMPLIES D2bar(r, p, i) = Delta2(r, p, 1)

sublemmal_proof: PROVE sublemmal FROM
lemmaidef {q <- r}, Alg3, A2_aux

lemma2x: LEMMA -
sic(p, r, 1)

AND §2(p, 1)

AND nonfaulty(p, 1 + 1)

AND nonfaulty(r, i + 1) AND in_S_interval(T, 1)
IMPLIES ebs(rt(p, i, T + Delta2(r, p, 1))
- (rt(p, 1, T) + Delta2(r, p, 1)))

< mult(half(rho), Delta)

lemma2x_proof: PROVE lemma2x FROM
lemma2c {PI <- Delta2(r, p, 1)},
lemmaidef {q <- r},
C2and3,
multd {x <- half(rho), y <- abs(Delta2(r, p, 1)), z <- Delta},
rho_pos

lemmad_proof: PROVE lemmaddef FROM

rearrange3
{x <- rt(p, 4, T) + D2bar(r, p, 1),
y <- rt(q, i, T) + D2var(r, q, 1),
u <- rt(q, i, T + Delta2(r, q, 1)),
v <- rt(p, i, T + Delta2(r, p, 1)),
w <- rt(r, i, T)},

sublemmal,

sublemmal {p <- g},

lemma2x,

lemma2x {p <- q},

lemma3def {q <- r},

lemma3def {p <- q, q <- r},

§1C_lemma

END lemmad

Lemmab

lemmab: MODULE
USING algorithm, clockprops
THEORY

P. q. r: VAR proc

T: VAR clocktime

i, J: VAR period

lemmabdef: LEMMA
s1c(p, q. 1)
AND nonfaulty(p, 1 + 1)
AND nonfaulty(q, i + 1) AKD in_B_interval(T, i)
IMPLIES abe(rt(p, 1, T) + D2bar(r, p, 1)
- (rt(q, 1, T) + D2var(r, q, 1)))
< delta + 2 * Delta

PROOF
a, b, x, y: VAR clocktime
rearrangel: LEMMA (a + x) - (b+y) =(a-Db) + x -y
rearrangei_proof: PROVE rearrangel

rearrange2: LEMMA
abs((a + x) - (b + y)) <= abs(a - b) + abs(x) + abs(y)

rearrange2_proof: PROVE rearrange2 FROM
rearrangel, abs_ax8, abs_ax2 {x <- (a -), y <- (x - y)}

lemmabproof: PROVE lemmabdef FROM
rearrange2

{a <- rt(p. 1, T),

b < rt{q, 1, T),

x <- D2bar(r, p, 1),

y <- D2bar(r, q, 1)},
D2bar_prop {p <- r, q <- p},
D2bar_prop {p <- r, q <- q},
inRS,

§1Cdef,
nonfx,

203

204 Appendix D. Plain EHDM Specification Listings

nonfx {p <- q}

END lemmab

Lemma6

lemma6: MODULE
USING algorithm, clockprops, lemma2
THEORY

P. 9: VAR proc

i: VAR period

T, PI: VAR clocktime

sublemma_A: LEMMA
nonfaulty(p, 1)
AND nonfaulty(q, 1) AND in_R_interval(T, i)
IMPLIES skew(p, q, T, 1)
< skew(p, q, T_sup(i), 1) + rho * R

lemma6def: LEMMA

nonfaulty(p, 1 + 1)

AND nonfaulty(q, 1 + 1) AND in_R_interval(T, i + 1)
IMPLIES skew(p, q, T, 1 + 1)
< abs(rt(p, 1, T_sup(i + 1)) + Deltai(p, 1)
- (rt(q, 1, T_sup(i + 1)) + Deltai(q, 1)))
+ rho * R
+ tho * Sigma

PROOF

sublemmal: LEMMA
0 <= PI AND PI <= R IMPLIES 2 * mult(half(rbo), PI) <= rho * R

subi_proof: PROVE sublemmal FROM
mult2 {x <- half(rho), y <- R},
times_half {x <- rho},
multd {x <- half(rho), y <- PI, z <- R},
rho_pos,
pult_ax {x <- rho, y <- R}

sub_A_proof: PROVE sublemma_A FROM
Rde?,
rearrange_alt
{x <- rt(p, 1, T,
y<-rt(q, 1, T),
u <- rt(p, i, T_sup(i)),

205

206 Appendix D. Plain EHDM Specification Listings

v <- PICpi,

v <~ rt(q, 1, T_sup(4))},
lemma2d {PI <- PICp1},
lemma2d {p <- q, PI <- PICpi},
sublemmai {PI <- PICp1}

sublemma2: LEMMA
skew(p, q, T, 1 + 1)
= abs(rt(p, i, T + Deltai(p, i)) - rt(q, i, T + Deltai(q, 1)))

sub2_proof: PROVE sublemma2 FROM clock_prop, clock_prop {p <- q}

lemma6_proof: PROVE lemma6def FROM
sublemma A{i <- i + 1},
sublemma2 {T <- T_sup(i + 1)},
rearrange
{x <~ rt(p, 1, T_sup(i + 1) + Deltai(p, 1)),
y <- rt(q, 4, T_sup(d + 1) + Deltai(q, 1)),
u <- rt(p, 1, T_sup(i + 1)),
v <- Deltai(p, 1),
v <- rt(q, 1, T_sup(i + 1)),
z <- Deltai(q, 1)},
lemma2c {T <- T_sup(i + 1), PI <- Deltai(p, 1)},
lemma2c
{T <- T_sup(i + 1),
PI <- Deltai(q, i),
P < a},
Algl,
Alg1 {p <- q}.
§2_ax,
§2_ax {p <- q},
Theorem_2,
Theorem_2 {p <- q},
multd {x <- half(rho), y <- abs(Deltai(p,i)) , z <- Sigma},
multd {x <- half(rho), y <- abs(Deltai(q,i)) , z <- Bigma},
rho_pos,
Ti_in_S§,
Cc2,
half3 {x <- rho, y <- Sigma},
mult_ax {x <- rho, y <- Sigma}

END lemma6

Summations 207

summations: MODULE
USING algorithm, sums, lemmad, lemmab, lemma6
THEORY

P. q. r: VAR proc

T: VAR clocktime

i: VAR period

culmination: LEMMA
S1A(1 + 1) AND S1C(p, q, 1)
IMPLIES (nonfaulty(p, i + 1)
AND nonfaulty(q, 1 + 1) AND in_R_interval(T, i + 1)
IMPLIES skew(p, q, T, 1 + 1)
<= ((delts + 2 * Delte) * m
+ 2 % (rho * 8§ + eps
+ mult(balf(rho), Delta))
* (o - m))
/n
+ rho * R
+ rho * Sigma)

PROOF

11: LEMMA abs(rt(p, 1, T_sup(di + 1)) + Deltal(p, 1)
- (rt(q, 1, T_sup(i + 1)) + Deltai{qg, 1)))
<= pean(1,
n,
(LAMBDA r -> number :
abs(rt(p, 1, T_sup(i + 1)) + D2bar(r, p. 1)
- (rt(q, 1, T_sup(i + 1)) + D2bar(r, q, 1)))))

12: LEMMA abs(rt(p, 1, T_sup(i + 1)) + Deltai(p, 1)
- (rt(q, i, T_sup(i + 1)) + Deltai(q, i)))
<= (gum(1,
n,
(LAMBDA r -> number :
abs(rt(p, 1, T_sup(4 + 1)) + D2bar(r, p, 1)
- (rt(q. 1, T_sup(4 + 1)) + D2bar(r, q, 1)))))
+ sun(m + {1,
n,
(LAMBDA r -> number :

208

138:

14:

16:

Appendix D. Plain EHDM Specification Listings

abs(rt(p, 1, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1))
+ D2bar(r, q, 1))))))
/n

LEMMA S1A(i + 1)
AND §1C(p, q. 1) AND nonfaulty(p, i + 1) AND nonfaulty(q, 1 + 1)
IMPLIES sum(1,
R,
(LAMBDA r -> number :
abs(rt(p, 4, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q. 1, T_sup(i + 1))
+ D2bar(r, q. 1)))))
<= (delta + 2 * Delta) * m

LEMMA S1A(1 + 1)
AND 8§1C(p, q, 1) AND nonfaulty(p, i + 1) AND nonfaulty(q, i + 1)
IMPLIES sum(m + 1,
n,
(LAMBDA r -> number :
abs(rt(p, 4, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(1 + 1))
+ D2bar(r, q, 1)))))
<= 2 % (rho * § + eps + mult(half(rho), Delte)) * (n - m)

LEMMA S1A(4 + 1)
AND 81C(p, q, 1) AND nonfaulty(p, 1 + 1) AND nonfaulty(q, i + 1)
IMPLIES abs(rt(p, i, T_sup(i + 1)) + Deltai(p, 1)
- (rt(q, 1, T_sup(i + 1)) + Deltai(q, 1i)))
<= ((delta + 2 * Delta) * m
+ 2 % (rho * § + eps + rult(half(rho), Delta))
* (o - m))

/n

11_proof: PROVE 11 FROM
Alg2,
Alg2 {p <- q},
rearrange_sum

{x <~ rt(p, 1, T_sup(i + 1)),

<- rt(q, i, T_sup(i + 1)),

<- (LAMBDA r -> number : D2bar(r, p, 1)),
<- (LAMBDA r -> number : D2bar(r, q, 1)),
<- 1,

<- n},

0

abs_mean

{1 <1,
j <-n,

Summations ' 209

F <- (LAMBDA r -> number :
x€p3 + D2bar(r, p, i) - (yep3 + D2bar(r, q, 1)))},
CO_a

12_proof: PROVE 12 FROM
11,
split_mean
{1 <-1,
j <~ n,
k <-n,
F <- (LAMBDA r -> number :
ebs(rt(p, i, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2bar(r, q, 1))))},
CO_a,
COo_b

bound_faulty: LEMMA
S1A(L + 1)
AND s1C(p, q, 1)
AND 1 <= r
AND r <= m AND nonfaulty(p, i + 1) AND nonfaulty(q, i + 1)
IMPLIES abs(rt(p, 1, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2bar(r, q, 1)))
< delta + 2 * Delta

bound_faulty_proof: PROVE bound_faulty FROM
lemmabdef {T <- T_sup(i + 1)}, Ti_in_8

13_proof: PROVE 13 FROM
sum_bound
{F <- (LAMBDA r -> npumber :
abs(rt(p, i, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2bar(r, q, 1)))),
X <- delta + 2 * Delta,
i1,
j < m},
bound_faulty {r <- ppCpi},
CO_b

52_pqr: LEMMA §2(p, i) AND 82(q, 1) AND 82(r, 1)

§2_pqr_proof: PROVE S52_pqr FROM
Theorem_2, Theorem_2 {p <- q}, Theorem_2 {p <- r}

bound_nonfaulty: LEMMA
S1A(1 + 1)
AND B1C(p, q, 1)

210 Appendix D. Plain EHDM Specification Listings

ANDm + 1 <= :
AND r <= n AND nonfaulty(p, i + 1) AND nonfaulty(q, 1 + 1)
IMPLIES abs(rt(p, i, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2bar(r, q, 1)))
< 2 * (rho * § + eps + mult(half(rho), Delta))

bound_nonfaulty_proof: PROVE bound_nonfaulty FROM
SiAdef {1 <- i + 1},
S1A_lemma,
S1Adef,
nonfx,
nonfx {p <- q}.
Theorem_1 {q <- r},
Theorem_i {p <- q, q <- r},
§2_pqr,
lemmaddef {T <- T_sup(i + 1)},
Ti_in_8

14_proof: PROVE 14 FROM
sum_bound
{F <- (LAMBDA r -> number :
abs(rt(p, 1, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2bar(r, q, 1)))),
x <- 2 * (rho * 8 + eps + mult(half(rho), Delta)),
i<-m+1,

j <- n},
bound_nonfaulty {r <- ppepi},
Co_b

16_proof: PROVE 15 FROM
12,
18,
14,
div_mon2
{x <- sum(1,
R,
(LAMBDA r -> pumber :
abs(rt(p, 1, T_sup(d + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2ber(r, q, 1)))))
+ pum(m + 1,
n,
(LAMBDA r -> number :
abs(rt(p, 4, T_sup(i + 1)) + D2bar(r, p, 1)
- (rt(q, 1, T_sup(i + 1)) + D2var(r, q, 1))))).
y <- (delta + 2 * Delta) * m
+ 2 * (rho * § + eps + mult(half(rho), Delta)) * (n - m),
z <- n},

Summations 211

CO_a
culm_proof: PROVE culmination FROM lemma6def, 15, SiAdef {1 <-1+1}

END summations

212 Appendix D. Plain EHDM Specification Listings

juggle: MODULE
USING algorithm
THEORY

rearrange_delta: LEMMA
delta >= 2 * (eps + rho * 8) + 2 * m * Delta / (n - m)
+n*rho*R/ (n-nm)
+ rho * Delta
+n * rho * Sigma / (n - m)
IMPLIES delta
>= ((delta + 2 * Delta) * m
+ 2 % (eps + rho * 8 + mult(hal?(rho), Delta))
* (n - m))
/n
+ rho * R
+ rho * Sigma

PROOF
a, b, bi, b2, b3, b4, b, b6, c, x, y: VAR number

distrib6: LEMMA
(b1 + b2 + b3 + b4 + b6 + bB) * ¢
=Dbl *xc+Db2*c+Db3*xc+Dbd *xc+Dbb*xc+b6x*c

distrib6_proof: PROVE distribé

distrib6_mult: LEMMA
nult((bi + b2 + b3 + b4 + b6 + bB), c)
= pult(bl, ¢) + mult(b2, ¢) + mult(b3, c) + mult(bd, c)
+ mult (b6, ¢)
+ mult (b6, ¢)

distrib6_mult_proof: PROVE distrib6_mult FROM

distridé,

mult_ax {x <- bl + b2 + b3 + b4 + bE + b6, y <- c},
mult_ax {x <- b1, y <- c},

mult_ax {x <- b2, y <- c},

mult_ax {x <- b3, y <~ ¢},

mult_ax {x <- bd, y <~ ¢},

mult_ax {x <- b6, y <- c},

mult_ax {x <- b6, y <- c}

Juggle

mult_ineqi: LEMMA
a>bl +b2 +b3 +b4d +b6ANDec >0
IMPLIES mult(a, ¢)
>= mult(bl, ¢) + mult(b2, ¢) + mult(b3, ¢) + mult(b4, c)
+ mult (b5, ¢)

mult_ineqi_proof: PROVE mult_ineql FROM
distrib6_mult {b6 <- 0},
mult_mon2 {x <- bl + b2 + b3 + bd + b6, y <- a, z <- ¢},
mult_ax {x <~ 0, y <- ¢}

distrib6_div: LEMMA
c >0 IMPLIES (b1 + b2 + b3 + bd + b5 + b8) / ¢
=bl /c+d2/c+b3/c+bd/c+b6E/c+DbB/c

reciprocal: LEMMA y /= O IMPLIES mult(x, 1 / §y) =x / §
reciprocal_proof: PROVE reciprocal FROM quotient_ax, mult_ax {y <- 1/y}

distrib6_div_proof: PROVE distrib6_daiv FROM

distrib6_mult {c <- 1 / ¢},

reciprocal {x <- bl + b2 + b3 + b4 + b6 + b6, y <~ ¢},
reciprocal {x <- b1, y <- c},

reciprocal {x <- b2, y <- ¢},

reciprocal {x <- b3, y <- c},

reciprocal {x <- b4, y <- ¢},

reciprocal {x <- b6, y <- c},

reciprocal {x <- b8, y <- c}

cancel_mult: LEMMA ¢ > O AND mult(a, ¢) >= b IMPLIESa >=b / ¢

cancel_mult_proof: PROVE cencel_zmult FROM
div_mon2 {z <- c, x <~ b, y <- mult(a, c)},
cancellation_mult {x <- a, y <- ¢}

mult_ineq2: LEMMA
¢ > 0 AND mult(a, ¢) >= bl + b2 + b3 + b4 + b6 + b6
IMPLIES a >= b1 / c +b2/c+b3/c+bd /c+b5/c+b8/c

mult_ineq2_proof: PROVE mult_ineq2 FROM
cancel_mult {b <- bl + b2 + b3 + b4 + b6 + b6}, distrib6_div

distrib4_div: LEMMA
¢ >0 IMPLIESbl /¢ +b2/c+Db3/c+bd/c
= (bl + b2 +b3 +b4) /¢

distrib4_div_proof: PROVE distrib4_div FROM

213

214 Appendix D. Plain EHDM Specification Listings

distrib6_mult {bb <- 0, b6 <- 0, ¢ <- 1 / ¢},
reciprocal {x <- bi + b2 + b3 + b4, y <~ c},
reciprocal {x <- b1, y <- ¢},
reciprocal {x <- b2, y <- ¢},
reciprocal {x <- b3, y <- ¢},
reciprocal {x <- b4, y <- ¢},
mult_ax {x <- 0, y <- 1 / ¢}

stepl: LEMMA
delta >= 2 * (eps + rho * §) + 2 * m * Delta / (n - m)
+n*rho*R/ (n-nm)
+ rho * Delta
+ n * rho * Signa / (n - m)
IMPLIES mult(delta, n - m)
>= mult(2 * (eps + rho * §), n ~ m) + 2 * m * Delta
+n *rho *R
+ mult(rho * Delta, n - m)
+ n * rho * Sigma

| stepl_proof: PROVE stepl FROM
mult_ineqi

{a <- delta,

c<n-n,

b1 <- 2 * (eps + rho * B),

b2 <~ 2 * m * Delta / (n - m),

b3 <- n * rho * R / (n - m),

b4 <- rho * Delta,

b6 <- n * rho * Sigma / (n - m)},
mult_div {x <- 2 * m * Delta, y <- n - m},
mult_div {x <- n * rho * R, y <- n - m},
pult_div {x <- n * rho * Sigma, y <~ n - m},
COo_b

step2: LEMMA
nult(delta, n - m)
>= mult(2 * (eps + Tho * §), n - m) + 2 * m * Delta
+n *xrho * R
+ pult(rho * Delta, n - m)
+ n * rho * Sigma
IMPLIES mult(deltas, n)
>= pult(delta,) + mult(2 * (eps + rho * §), n - m)
+ 2 % m % Delta
+n * rtho * R
+ mult(rho * Delta, n - m)
+ n * rho * Sigma

step2_proof: PROVE step2 FROM

Juggle 215

mult_ax {x <- delta, y <- n - m},
mult_ax {x <- delta, y <- n},
mult_ax {x <- delta, y <- m}

step3: LEMMA
mult(delta, n)
>= mult(delta, m) + mult(2 * (eps + rho * §), n - m)
+ 2 * m * Delta
+n * rho * R
+ mult(rho * Delta, n - m)
+ n * rho * Sigma
IMPLIES delta
>= mult(delta, m) / n + mult(2 * (eps + rho * §), n - m) / n
+2%m*Delta/n
+ rho * R
+ mult(rho * Delta, n - m) / n
+ rho * Bigma

step3_proof: PROVE step3 FROM
mult_ineq2
{a <- delta,
¢ < n,
bl <- mult(delta, m),
b2 <- mult(2 * (eps + rho * §), n - m),
b3 <- 2 * m * Delta,
b4 <- n * rho * R,
b6 <- mult(rho * Delta, n - m),
b6 <- n * rho * Sigma},
cancellation {x <- rho * R, y <- n},
cancellation {x <- rho * Sigma, y <- n},
CO_e

stepd: LEMMA
delta >= mult(delta,) / n + mult(2 * (eps + vho * §), n - m) / n
+ 2% nm*Delta/n
+ rho * R
+ mult(rho * Delta, n - m) / n
+ rho * Sigma
IMPLIES delta
>= (mult(delta, m) + mult(2 * (eps + rho * 8), n - m)
+ 2 *» m * Delta
+ mult(rho * Delta, n - m))
/n
+ rho * R
+ rho * Sigma

stepd_proof: PROVE stepd FROM

216 Appendix D. Plain EHDM Specification Listings

CO_a,
distrib4_div
{c <~ n,
bl <- mult(delta, m),
b2 <- mult(2 * (eps + rho * §), n - m),
b3 <- 2 * m * Delta,
b4 <- mult(rho * Delta, n - m)}

stepb: LEMMA
delta >= (mult(delta, m) + mult(2 * (eps + rho * §), n - m)
+ 2 % m * Delta
+ mult(rho * Delta, n - m))
/n
+ rho * R
+ rho * Sigma
IMPLIES delta
>= ((delta + 2 * Delta) * m
+ 2 % (eps + rho * § + mult(half(rho), Delta))
* (n - m))
/ n
+ rho * R
+ rho * Sigma

stepb_proof: PROVE stepb FROM
mult_ax {x <- delta, y <- =},
mult_ax {x <- rho * Delta, y <- n - m},
mult_ax {x <- 2 * (eps + rho * E), y <- n - m},
half3 {x <- rho, y <- Delta},
mult_ex {x <- rho, y <- Delta}

final: PROVE rearrange_delta FROM stepl, step2, step3, stepd, stepb

END juggle

Main 217

main: MODULE

USING natinduction, algorithm, lemma6, summations, juggle

PROOF
P. 4, r: VAR proc
i, j, k: VAR period
T: VAR clocktime
basis: LEMMA §1A(0) IMPLIES §1C(p, q, 0)

basis_proof: PROVE basis FROM
S1Adef {i <- 0}, sublemma_A {i <- 0}, S1Cdef {1 <- 0}, A0, Cb

ind_step: LEMMA
S1A(i + 1) AND 81C(p, q, 1) IMPLIES §1C(p, q, i + 1)

ind_proof: PROVE ind_step FROM
culmination, rearrange_delta, §iCdef {i <- i + 1}, C6

Theorem_1_proof: PROVE Theorem_1 FROM
basis,
ind_step {1 <- 1€p3},
mod_induction
{n <-4,
A <- (LAMBDA k -> bool : S1A(k)),
B <- (LAMBDA k -> bool : SIC(p, q, k))},
S1A_lemma {i <- jOp3}

END main

Report Documentation Page

N3I0N3: ASrNaulc s anc
5CACE AQrYstalor

1. Report No. 2. Government Accession No. 3. Recipient’'s Catalog No.

NASA CR-4239

4. Title and Subtitie 5. Report Date

Formal Verification of a Fault Tolerant June 1989

Clock Synchronization Algorithm & Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

John Rushby and Frieder von Henke

10. Work Unit No.
505-66-21-01

9. Performing Organization Name and Address

. 11. Contract or Grant No.
SRI International

333 Ravenswood Avenue NAS1-17067

Menlo Park ’ CA 94025 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Contractor Report

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Ricky W. Butler
Task 4 Final Report

16. Abstract
We describe a formal specification and mechanically-assisted verification of the
interactive convergence clock synchronization algorithm of Lamport and Melliar-
Smith. 1In the course of this work we discovered several technical flaws in the
analysis given by Lamport and Melliar-Smith, even though their presentation is
unusually precise and detailed. As far as we know these flaws were not detected
by the "social process" of informal peer scrutiny to which the paper has been
subjected since its publication. We discuss the flaws in the published proof
and give a revised presentation of the analysis that not only corrects the flaws
in the original, but is also more precise and, we believe, easier to follow.
This informal presentation was derived directly from our formal specification
and verification. Some of our corrections to the flaws in the original require
slight modifications to the assumptions underlying the algorithm and to the
constraints on its parameters, and thus change the external specifications of
the algorithm. The formal analysis of the interactive convergence clock
synchronization algorithm was performed using our Enhanced Hierarchical
Development Methodology (EHDM) formal specification and verification
environment. This application of EHDM provides a demonstration of some of the
capabilities of the system.

17. Key Words (Suggested by Author(s)} 18. Distribution Statement
Verification Unclassified - Unlimited
Clock Synchronization
Design Proof ' Subject Category 61
Formal Verification
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price
. 232 All
Unclassified Unclassified
NASA FORM 1626 OCT 86 NASA-Langley, 1989

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

